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Abstract— Edge-preserving denoising is of great interest in image processing. This paper presents a wavelet-based multiscale 
products thresholding scheme for noise suppression of the images. A dyadic wavelet transform (A Canny edge detector-) is also 
employed. In the result we can see that the with the decay in noise rapidly it evolve the high magnitude across wavelet scale. To 
take advantage of the wavelet interscale dependencies we multiply the adjacent wavelet sub bands to enhance edge structures 
while weakening noise. In the multiscale products, edges can be effectively distinguished from noise. 
An adaptive scale correlation wavelet thresholding technique is then proposed. In which the adaptive threshold is calculated 
which is imposed on the products, instead of on the wavelet coefficients. This proposed scheme suppresses the noise effectively 
and preserves the edges features than other wavelet-thresholding denoising methods. In the result we can see the better visual 
quality and increment in the signal to noise the last node will die in the network is to be discussed. In which round ratio as 
compare to the traditional technique. 
Keywords: SWT (stationary wavelet transform ), RF radio frequency,WT(wavelet Transform)

1.1INTRODUCTION

Wavelets are used to transform the signal under investigation 
into another representation which presents the signal 
information in a more useful form. When working with signals, 
the signal itself can be difficult to interpret. Therefore the signal 
must be decomposed or transformed in order to see what the 
signal actually represents.
The continuous wavelet transform is the most general wavelet 
transform. The problem is that a continuous wavelet transform 
operates with a continuous signal, but since a computer is 
digital, it can only do computations on discrete signals. The 
discrete wavelet transform has been developed to accomplish a 
wavelet transform on a computer.
Wavelets and wavelet transforms are used to analyze signals. 
The transformed signal is a decomposed version of the 
original signal, and can be converted back to the original signal. 
No information is lost in the process. When studying a musical 
tone, one of the features that is interesting is the frequency. The 

frequency for a clean A is 440Hz, see top plot in Figure 1.1. To 
determine the frequency of the signal one must measure the 
period of each wave, and calculate the frequency. The period of 
one wave is the time it takes from it is at one point in the wave, 
until it reaches the same position again. For example the time 
between two wave tops. 

Figure 1.1: A sine wave at 440 Hz, and its Fourier transform
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Using different transforms, the signal can be transformed into 
other representations. For this example, instead of having 
amplitude as a function of time, it would be better to have the 
amplitude as a function of frequency. This can be done by using 
the Fourier transform. Once one knows what frequencies are 
present, one can easily determine which tones the signal consists 
of, in the case of a musical signal. The bottom part of Figure 1.1
shows that it is easy to determine that the signal in the upper 
part of Figure 1.1 actually is an A when you perform the Fourier 
transform. Wavelet transforms can do the same, but they can 
also tell you when the tone A appeared in time, effectively 
giving you amplitude, time and frequency, all in one.

Figure1.2: A noise input signal, and corresponding Fourier 
transform.

Figure 1.3: Wavelet Transform Plot

1.2 PRESENT  WORK

It was analyzed that previous traditional thresholding techniques 
are not giving satisfactory result for image denoising. 
Disadvantage of this technique is that the SNR ratio decreases 
with the increase in image size and this technique is time 
variant. So we proposed a new method named Scale Correlation 
Wavelet thresholding method with the help of 2D dyadic 
wavelet. Advantage of  2D dydaic wavelet is that it is time 
invariant , also changes only scale parameter. So using this, an 
adaptive wavelet can be designed to enhance instantaneous 
feature of the image.
A New sure approach to Image Denoising: Interscale 
Orthonormal Wavelet Thresholding beyond the point wise 
approach, more recent investigations have shown that 
substantially larger denoising gains can be obtained by 
considering the intra- and interscale correlations of the wavelet 
coefficients. In addition, increasing the redundancy of the 
wavelet transform is strongly beneficial to the denoising 
performance. We have selected three such techniques reflecting 
the state-of-the-art in wavelet denoising, against which we will 
compare our results.

Figure  1.4-Principle of wavelet denoising.

1.3   PROPOSED WORK

In “Adaptive Wavelet Thresholding for Image Denoising and 
Compression” On a seemingly unrelated front, lossy 
compression has been proposed for denoising in several works 
[6], [5], [21], [25], [28]. Other works [4], [12]–[16] also 
addressed the connection between compression and denoising.

1.4 RESULT AND DISCUSSION

In this section, the performances by the proposed scheme on 
some INPUT images are compared with the traditional wavelets 
thresholding technique. We made a comparison by using 
parameter i.e. signal to noise ratio and visual quality.
(a). VISUAL QUALITY : When we compare these techniques 
on the basis of visual quality the result is very clear that adaptive 
scale correlation wavelet thresholding technique give the best 
quality picture in the result. Figure (1.4) show the original image 
which is further made noisy by adding the random 
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Figure 1.4 : ORIGINAL IMAGE

Figure 1.5 : NOISY IMAGE

Noise in the input image figure(1.5). Then after this by applying 
the traditional wavelet thresholding the output image is shown 
in figure(1.6).

Figure 1.6 : Image After Traditional Wavelet Thresholding

Figure 1.7 : Image after SCALE CORRELATION WAVELET 
THRESHOLDING

Finally the figure (1.7) show the result of adaptive scale 
correlated wavelet thresholding image from where it is clear that 
the image quality is far better in this case as compare to 
traditional wavelet thresholding.
(b) SIGNAL TO NOISE RATIO: We calculated the value of 
signal to noise ratio at three different point though which we can 
compare the both technique. The signal to noise ratio for the 
input or we can say original image is 

snr_o = 14.3144 dB............(i)
Then apply the traditional wavelet thresholding and calculate the 
signal to noise ratio, which is

snr_ft =   23.5478 dB............(ii)
The value for signal to noise ratio after adaptive scale 
correlation wavelet thresholding is

snr_f =   24.7967 dB............(iii)
From the above calculated value for signal to noise ratio we can 
conclude that the scale correlation wavelet thresholding 
technique give the best result over traditional wavelets 
thresholding.

1.5 CONCLUSION

This paper proposes an image denoising scheme using an 
adaptive scale correlation wavelet thresholding technique. 
Unlike traditional schemes that directly threshold the wavelet 
coefficients, the proposed scheme multiplies the adjacent 
wavelet subbands to amplify the significant features and then 
applies the thresholding to the multiscale products to better 
differentiate edge structures from noise. The distribution of the 
products was analyzed and an adaptive threshold was 
formulated to remove most of the noise. Experiments on the 
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input images show that the proposed scheme not only achieves 
high SNR and VISUAL QUALITY measurements but also 
preserves more edge features.
By this adaptive scale correlation wavelet thresholding 
technique we get high quality of image and better value for the 
signal to noise ratio. This can be used in the medical images 
because edge features preserving nature. We can also design the 
further effective technique by forwarding this for getting more 
clear visuality and better in signal to noise ratio. By getting 
more correctively threshold value get the better in the output 
which is further beneficial in many areas.  
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