INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

Existence of solutions for neutral functional mixed-volterra integrodifferential evolution equations with nonlocal conditions

S. Chandrasekaran ${ }^{\# 1}$ and S. Karunanithi ${ }^{\# 2}$
\#1 Department of Mathematics, SNS College of Technology, Coimbatore -641 035, Tamil Nadu, India. \#2 Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, TamilNadu, India.

Abstract

In this work, we study the existence of mild solutions for nonlinear neutral functional mixed-volterra integrodifferential evolution equations with nonlocal conditions in Banach spaces. The results are obtained by using the fractional powers of operators and Sadovskii's fixed point theorem.

Keywords- Semigroup, mild and strong solution, Neutral equations, nonlocal condition.
2000 subject Classi fication: 34G20, 47D03, 47H10, 47H20.

I. INTRODUCTION

Abstract neutral differential equations arise in many areas of applied mathematics. As such, they have been largely studied during the last few decades. The literature related to ordinary neutral differential equations is very extensive. The work in partial neutral functional differential equations with infinite delay was initiated by Hernandez and Henriquez. First-order partial neutral functional differential equations have been studied by different authors. The reader can consult Adimy [1], Hale [13, 14] and Wu [25] for systems with finite delay and Hernandez Henriquez [17, 18] and Hernandez [16] for the unbounded delay case. Hernandez [15] established the existence results for partial neutral functional differential equations with nonlocal conditions modeled as

$$
\begin{gathered}
\frac{d}{d t}\left(u(t)+F\left(t, u_{t}\right)\right)=A u(t)+G\left(t, u_{t}\right), \\
0 \leq t \leq T \\
u_{0}=\varphi+q\left(u_{t_{1}}, u_{t_{2}}, u_{t_{3}}, \quad \ldots \quad u_{t_{n}}\right) \in \Omega
\end{gathered}
$$

Bahuguna and Agarwal [2] studied the approximation of solution to a partial neutral functional differential equation with nonlocal history condition

$$
\begin{gathered}
\frac{d}{d t}\left(u(t)+g\left(t, u\left(t-\tau_{1}\right)\right)+A u(t)=f\left(t, u(t), u\left(t-\tau_{2}\right)\right),\right. \\
t>0, \\
h(u)=\varphi, \text { on }[-\tau, 0]
\end{gathered}
$$

in a separable Hilbert space, where $\tau=\max \left\{\tau_{1}-\tau_{2}\right\}, \tau_{1}$, $\tau_{2}>0$. An extensive theory for ordinary neutral functional differential equations which includes qualitative behavior of classes of such equations and applications to biological and engineering processes. Several authors have studied the existence of solutions of neutral functional differential equations in Banach space $[2,3,4,6,11,12,13,15,17,18$, 23]. The nonlocal Cauchy problem for semi linear evolution equations in Banach space was studied first by Byszekswi [7, 8, 9] where he established the existence and uniqueness of mild and classical solutions. The nonlocal conditions were motivated by physical problems and their importance is discussed in [?, ?, ?]. Balachandran et al [2, 4, 5, 21] studied the nonlocal Cauchy problem for various type of nonlinear integrodifferntial equations. In addition, our result can also be

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

regarded as an extension of the corresponding results on classical problem in [10, 21].

In this paper, we study the following neutral functional integrodifferential equation with nonlocal condition

$$
\begin{array}{r}
\frac{d}{d t}\left(x(t)+F\left(t, x(t), x\left(b_{1}(t), \ldots x\left(b_{n}(t)\right)\right)\right)+A(t) x(t)\right. \\
=G\left(t, x(t), x\left(a_{1}(t)\right), \ldots . ., x\left(a_{m}(t)\right)\right) \\
+K\left(t, x(t), \int_{0}^{t} k(t, s, x(s)) d s, \int_{0}^{T} \boldsymbol{h}(t, s, x(s)) d s\right), \\
x(0)+g(x)=x_{0}
\end{array}
$$

II. PRELIMINARIES

Let $-A$ be the infinitesimal generator of a compact analytic semi group of uniformly bounded linear operators $U(t, s)$ defined in the Banach space X. Let $0 \in \rho(A)$, then define the fractional power A^{α}, for $0 \leq \alpha \leq 1$, as a closed linear operator on its domain $D\left(A^{\alpha}(t)\right)$ which is dense in X. Further $D(A(t))$ is a Banach space under the norm

$$
\|x\|_{\alpha}=\left\|A^{\alpha} x\right\|, x \in D\left(A^{\alpha}(t)\right)
$$

which we denote by X_{α}. Then for each $0 \leq \alpha \leq 1, X_{\alpha} \rightarrow X_{\beta}$ for $0<\beta<\alpha \leq 1$ and the imbedding is compact whenever the resolvent operator of A is compact. We assume that
(a) there is a $M \geq 1$ such that $\|U(t, s)\| \leq M$, for all $0 \leq t \leq$ a.
(b) for any $a>0$, there exists a positive constant C_{α} such that

$$
\left\|A_{\alpha} U(t, s)\right\| \leq \frac{C_{\alpha}}{t^{\alpha}}, 0<t \leq T
$$

Now we represent the basic assumptions on equation (1.1).
$\left(H_{1}\right) F:[0, T] \times X^{(n+1)} \rightarrow X$ is a continuous function, $F(0, T] \times$ $X^{(n+1)} \subset D(A(t))$ with n a positive integer, and there exists constants $L, L_{1}>0$ such that the function $A(t) F$ satisfies the Lipschitz condition:

$$
\begin{gather*}
\left\|A(t) F\left(s_{1}, x_{0}, x_{1}, \ldots, x_{n}\right)-A(t) F\left(s_{2}, \overline{x_{0}}, \overline{x_{1}}, \ldots, \overline{x_{n}}\right)\right\| \\
\leq L\left(\left|s_{1}-s_{2}\right| \max _{i=0,1, \ldots n}\left\|x_{i}-\overline{x_{i}}\right\|\right) \tag{2.2}
\end{gather*}
$$

for every $0 \leq s_{1}, s_{2} \leq T ; x_{\mathrm{i}}, \quad \overline{x_{i}} \in X, i=0,1, \ldots n$, and the inequality
$\left\|A(t) F\left(t, x_{0}, x_{1}, \ldots x_{n}\right)\right\| \leq \mathrm{L}_{1}\left(\max \left(\left\|x_{i}\right\|: i=\right.\right.$ $0,1, \ldots, n)+1)$
holds for any $\left(t, x_{0}, x_{1}, \ldots x_{\mathrm{n}}\right) \in[0, T] \times X^{n+1}$.
$\left(H_{2}\right)$ The function $G:[0, T] \times X^{m+1} \rightarrow \mathrm{X}$ satisfies the following condition:
(i) for each $t \in[0, T]$, the function $G(t,):. X^{m+1} \rightarrow X$ is continuous, and for each $\left(x_{0}, x_{1}, \ldots . ., x_{n}\right) \in X^{m+1}$, the function $G($., $\left.x_{0}, x_{1, \ldots}, x_{n}\right):[0 ; T] \in X$ is strongly measurable.
(ii) for each positive constant $k \in N$, there is a positive function $g_{k} \in L^{\prime}([0, T])$ such that

$$
\sup \left(\left\|x_{0}\right\|, \ldots \ldots .\left\|x_{m}\right\|\right) \leq k\left\|G\left(., x_{0}, x_{1}, \ldots \ldots \ldots, x_{m}\right)\right\|
$$

and

$$
\liminf _{k \rightarrow+\infty} \frac{1}{k} \int_{o}^{T} g_{k}(s) d s=\gamma<\infty
$$

$\left(H_{3}\right)$ The function $K:[0, T] \times X \times X \times X \rightarrow \mathrm{X}$ satisfies the following condition:
(i) For each $t \in[0, T]$, the function $K(., ., .,):. X \times X \times X \rightarrow X$ and for each $x, y \in X, K(., ., x, y):[0, T] \rightarrow X$ is strongly measurable.
(ii) For each positive number $r \in N$, there is a positive function $\mu_{\mathrm{r}} \in L^{\prime}([0, T])$ such that

$$
\sup _{\|x\| \leq r} \| K\left(s, x(s), \int_{0}^{s} k(s, \tau, x(\tau)) d \tau, \int_{0}^{s} h(s, \tau, x(\tau)) d \tau \|\right.
$$

and

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

$$
\lim \operatorname{in} f_{\mathrm{r} \rightarrow+\infty} \frac{1}{r} \int_{o}^{T} \mu_{r}(s) d s=\gamma_{1}<\infty
$$

$\left(H_{4}\right)$ ai, aj $\in C([0, T] ;[0, T]), i=1,2, \ldots, m, j=1,2, \ldots, n, g \in$ $C(H ; X)$ is completely continuous, where $H=C([0, T] ; X)$, and there exists a constant $L_{2}>0$ such that $\|g(x)\| \leq L_{2}\|x\|$ for each $x \in H$.

Theorem 2.1 (Sadovskii's fixed point theorem, [24]).

Let P be a condensing operator on a Banach space X, i,e., P is continuous and takes bounded sets into bounded sets, and $\alpha(P(B)) \leq \alpha(B)$ for every bounded set B of x with $\alpha(B)>0$. If $P(H) \subset H$ for convex, closed and bounded set H of X, then P has a bounded point in H (where $\alpha($.$) denotes the$ Kuratowski's measures of non-compactness).

III. EXISTENCE OF MILD SOLUTIONS

Definition 3.1: A continuous function $x():.[0, T] \rightarrow X$ is said to be a mild solution of the nonlocal Cauchy problem(1.1), is the function

$$
U(t, s) F\left(s, x\left(b_{1}(s)\right), \ldots \ldots \ldots \ldots, x\left(b_{n}(s)\right)\right), s \in(0, t)
$$

in integrable on $[0, t)$ and the following integral equation is verified:

$$
\begin{aligned}
& x(t)=U(t, 0)\left[x_{0}+F\left(0, x(0), x\left(b_{1}(0)\right), \ldots, x\left(b_{n}(0)\right)\right)\right. \\
& -g(x)] \\
& -F\left(t, x\left(b_{1}(t)\right), \ldots \ldots \ldots, x\left(b_{n}(t)\right)\right) \\
& +\int_{0}^{t} U(t, s) A(s) F\left(s, x(s), x\left(b_{1}(s)\right), \ldots \ldots \ldots \ldots, x\left(b_{n}(s)\right)\right) d s \\
& +\int_{0}^{t} U(t, s) G\left(s, x(s), x\left(a_{1}(s)\right), \ldots \ldots \ldots \ldots, x\left(a_{m}(s)\right)\right) d s \\
& \quad+\int_{0}^{t} U(t, s)[K(s, x(s)
\end{aligned}
$$

Theorem 3.1: If the assumption $\left(H_{1}\right)-\left(H_{4}\right)$ are satisfied and $x_{0} \in X$, then the nonlocal Cauchy problem (1.1) has a mild solution provided that

$$
L 0: L\left[(M+1) M_{0}, M T\right]<1
$$

and $M_{0} L_{1}+\left(L_{2}+\gamma+\gamma_{1}+M_{0} L_{1}+L_{1} T\right) M<1$,
where M is from property $(f), M_{0}=\sup \left\|A^{-1}(t)\right\|$.

Proof: For the sake of brevity, we rewrite $(t, x(t)$, $\left.x\left(b_{1}(t)\right), \ldots, x\left(b_{n}(t)\right)\right)=(t, v(t))$ and $\left(t, x(t), x\left(a_{1}(t)\right), \ldots, x\left(a_{m}(t)\right)\right)$ $=(t, u(t))$. Define the operator P on $C([0, T] ; X)$ by the formula

$$
\begin{gathered}
(P x)(t)=U(t, 0)\left[x_{0}+F(0, v(0))-g(x)\right]-F(t, v(t)) \\
+\int_{0}^{t} U(t, s) A(s) F(s, v(s)) d s \\
+\int_{0}^{t} U(t, s) G(s, u(s)) d s+\int_{0}^{t} U(t, s) K(s, x(s) \\
\left.\int_{0}^{s} k(s, \tau, x(\tau)) d \tau, \int_{0}^{s} h(s, \tau, x(\tau)) d \tau\right) d s \\
0 \leq t \leq T
\end{gathered}
$$

for each positive number k, let $B_{k}=\{x \in C([0, T] ; X):\|x(\mathrm{t})\|$ $\leq k, 0 \leq t \leq T\}$, then for each k, B_{k} is clearly a nonempty bounded closed convex set in $X([0, T] ; X)$, since the following relation holds

$$
\begin{gathered}
\|U(t, s) A(s) F(s, v(s))\| \leq\|U(t, s)\|\|A(s) F(s, v(s))\| \\
\leq M L_{1}(k+1)
\end{gathered}
$$

then from Bouchenr's theorem [20] it follows that $U(t, s)$ $A(s) F(s, v(s))$ is integrable on $[0, t]$ since it is obviously strongly measurable, so P is well defined on B_{k}. We claim that there exists a positive number k such kthat $P\left(B_{k}\right) \subseteq B_{k}$. It is not true, then for each positive number k, there is a function $x_{k}($.) $\in B_{k}$, but $P x_{k} \notin B_{k}$, that is

$$
\left\|P x_{k}(t)\right\|>k
$$

For some $t(k) \in[0, T]$. However, on the other hand, we have

$$
k<\left\|P x_{k}(t)\right\|=\| U(t, 0)\left[x_{0}+F(0, v(0))-g\left(x_{k}\right)\right]-
$$

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

$$
\begin{gathered}
F\left(t, v_{k}(t)\right)+\int_{0}^{t} U(t, s) A(s) F\left(s, v_{k}(s)\right) d s\|+\| \int_{0}^{t} U(t, s) \\
G\left(s, u_{k}(s)\right) d s+\int_{0}^{t} U(t, s) K\left(s, x_{k}(s), \int_{0}^{s} k\left(s, \tau x_{k}(\tau)\right) d \tau\right. \\
\quad \int_{0}^{T} h\left(s, \tau, x_{k}(\tau)\right) d \tau \| d s \\
\leq\left\|U(t, 0)\left[x_{0}-g\left(x_{k}\right)+F\left(0, v_{k}(0)\right)\right]\right\| \\
+\left\|A(t) A^{-1}(t) F\left(t, v_{k}(t)\right)\right\| \\
\quad+\int_{0}^{t}\|U(t, s)\|\left\|A(s) F\left(s, v_{k}(s)\right)\right\| d s \\
\quad \int_{0}^{t}\left\|U(t, s) G\left(s, u_{k}(s)\right)\right\| \\
\quad+\int_{0}^{t}\|U(t, s)\| \| K\left(s, x_{k}(s), \int_{0}^{s} k\left(s, \tau, x_{t}(\tau)\right) d \tau\right. \\
\left.\quad \int_{0}^{T} h\left(s, \tau, x_{k}(\tau)\right) d \tau\right) \| d s \\
\leq M_{M}\left[\left\|x_{0}\right\|+L_{2} k+M_{0} L_{1}(k+1)\right]+M_{0} L_{1}(k+1) \\
+M L_{1}(k+1) T
\end{gathered}
$$

Dividing on both sides by k and taking the lower limit $k \rightarrow+\infty$, we get
$M_{0} L_{1}+\left(L_{2}+M_{0} L_{1}+L_{1} T+\gamma+\gamma_{1}\right) \mathrm{M} \geq 1$.
This is contradicts (7). Hence some positive $k, P\left(B_{k}\right) \leq B_{k}$.
We will show that the operator P has a fixed point on B_{k}, which implies that equation (1.1) has a mild solution. To this end, we decompose P into $P=P_{1}+P_{2}$, where the operator P_{1}, P_{2} are dfined on B_{k} respectively by

$$
\begin{aligned}
\left(P_{1} x\right)(t)=U(t, 0) & F(0, v(0))-F(t, v(t)) \\
& +\int_{0}^{t} U(t, s) A(s) F(s, v(s)) d s
\end{aligned}
$$

and

$$
\left(P_{2} x\right)(t)=U(t, 0)\left[x_{0}-g(x)\right]+\int_{0}^{t} U(t, s)
$$

$G(s, u(s)) d s+\int_{0}^{t} U(t, s) K\left[\left(s, x(s), \int_{0}^{s} k(s, \tau, x(\tau)) d \tau\right.\right.$,
$\left.\int_{0}^{T} h\left(s, \tau, x_{k}(\tau)\right) d \tau\right] \mathrm{ds}$
$0 \leq t \leq T$, and will verify that P_{1} is contraction which P_{2} is compact operator.

To prove P_{1} is a contraction, we take $x_{1}, x_{2} \in B_{k}$, then for each $t \in[0, T]$ and by condition $\left(H_{1}\right)$ and (6), we have

$$
\begin{aligned}
& \left\|\left(P_{1} x_{1}\right)(t)\left(P_{2} x_{2}\right)(t)\right\| \leq \| U(t, 0)\left[F\left(0, v_{1}(0)\right)-\right. \\
& \left.F\left(0, v_{2}(0)\right)\right]\|+\| F\left(t, v_{1}(t)\right)-F\left(t, v_{2}(t)\right) \| \\
& +\left\|\int_{0}^{t} U(t, s) A(s)\left[F\left(s, v_{1}(s)\right)-F\left(s, v_{2}(s)\right)\right] d s\right\| \\
& \leq(M+1) M_{0} L \sup _{0 \leq t \leq T}\left\|x_{1}(s)-x_{2}(s)\right\| \\
& =L_{0} \sup _{0 \leq t \leq T}\left\|x_{1}(s)-x_{2}(s)\right\| \\
& \left\|\left(P_{1} x_{1}\right)(t)-\left(P_{2} x_{2}\right)(t)\right\| \leq \mathrm{L}_{0}\left\|x_{1}(s)-x_{2}(s)\right\|
\end{aligned}
$$

which shows that P_{1} is contraction.
To prove that P_{2} is compact, firstly we prove that P_{2} is continuous on B_{k}, Let $\left\{x_{n}\right\} \subseteq B_{k}$ with $x_{n} \rightarrow x$ is B_{k}, then by $\left(H_{2}\right)$, we have

$$
G\left(s, u_{n}(s)\right) \rightarrow G(s, u(s)), n \rightarrow \infty
$$

$$
\begin{aligned}
& K\left(t, x_{n}(t), \int_{0}^{t} k\left(t, s, x_{n}(s)\right) d s, \int_{0}^{T} h\left(t, s, x_{n}(s)\right) d s\right) \\
& \rightarrow K\left(t, x(t), \int_{0}^{t} k(t, s, x(s)) d s, \int_{0}^{T} h(t, s, x(s)) d s\right)
\end{aligned}
$$

as $n \rightarrow \infty$. Since

$$
\begin{aligned}
& \left\|G\left(s, u_{n}(s)\right)-G(s, u(s))\right\| \leq 2 g_{k}(s) \\
& \\
& \| K\left(t, x_{n}(t), \int_{0}^{t} k\left(t, s, x_{n}(s)\right) d s, \int_{0}^{T} h\left(t, s, x_{n}(s)\right) d s\right) \\
& \quad-K\left(t, x(t), \int_{0}^{t} k(t, s, x(s)) d s, \int_{0}^{T} h(t, s, x(s)) d s\right) \| \\
& \quad \leq 2 \mu_{r}(s),
\end{aligned}
$$

then by nominated convergence theorem we have,

$$
\begin{aligned}
\left\|P_{2} x_{n}-P_{2} \quad x\right\|= & \sup _{0 \leq t \leq T} \| U(t, 0)\left[x_{n}(0)-x(0)\right] \\
& +\int_{0}^{t} U(t, s)\left[G\left(s, u_{n}(s)\right)-G(s, u(s))\right] d s \|
\end{aligned}
$$

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

$+\sup _{0 \leq t \leq T} \| \int_{0}^{t} U(t, s)\left[K\left(s, x_{n}(s), \int_{0}^{s} k\left(s, \tau, x_{n}(\tau)\right) d \tau\right.\right.$,
$\left.\int_{0}^{T} h\left(s, \tau, x_{n}(\tau)\right) d \tau\right) d s-$
$\left.K\left(s, x(s), \int_{0}^{T} h(s, \tau, x(\tau)) d \tau\right) d s\right] \| \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$.
That is P_{2} is continuous.
We prove that the family $\left\{P_{2} x: x \in B_{k\}}\right.$ is family of equicontinuous functions. To do this, let $0 \leq t_{1} \leq t 2 \leq T ; 0$ $<\epsilon<t_{1}$, then

$$
\begin{aligned}
& \left\|\left(P_{2} x\right)\left(t_{2}\right)-\left(P_{2} x\right)\left(t_{1}\right)\right\| \\
& \leq\left\|U\left(t_{2}, 0\right)-U\left(t_{1}, 0\right)\right\|\|x(0)\| \\
& +\int_{0}^{t-\epsilon}\left\|U\left(t_{2}, s\right)-U\left(t_{1}, s\right)\right\|\|G(s, u(s))\| d s \\
& +\int_{t_{1-\epsilon}}^{t_{1}}\left\|U\left(t_{2}, s\right)-U\left(t_{1}, s\right)\right\|\|G(s, u(s))\| d s \\
& +\int_{t_{1}}^{t_{2}} U\left(t_{2}, s\right)\| \| G(s, u(s)) \| d s \\
& \quad+\int_{0}^{t_{1-\epsilon}}\left\|U\left(t_{2}, s\right)-U\left(t_{1}, s\right)\right\| \\
& \| K\left(s, x(s), \int_{0}^{s} k(s, \tau, x(\tau)) d \tau, \int_{0}^{T} h(s, \tau, x(\tau)) d \tau \| d s\right.
\end{aligned}
$$

$$
+\int_{t_{1-\epsilon}}^{t_{1}} U\left(t_{2}, s\right) \|
$$

$$
\| K\left(s, x(s), \int_{0}^{s} k(s, \tau, x(\tau)) d \tau, \int_{0}^{T} h(s, \tau, x(\tau)) d \tau \| d s\right.
$$

$$
+\int_{t_{1}}^{t_{2}} U\left(t_{2}, s\right) \|
$$

$$
\| K\left(s, x(s), \int_{0}^{s} k(s, \tau, x(\tau)) d \tau, \quad \int_{0}^{T} h(s, \tau, x(\tau)) d \tau \| d s\right.
$$

Noting that $\|G(s, u(s))\| \leq g_{k}(s)$ and $g_{k}(s) \in L^{\prime}$, we see that $\left\|\left(P_{2} x\right)\left(t_{2}\right)-\left(P_{2} x\right)\left(t_{1}\right)\right\|$ tends to zero independently of $x \in$ B_{k} as $t_{2}-t_{1} \rightarrow 0$ since the compactness of $\{U(t, s), t>s\}$ implies the continuity of $\{U(t, s), t>s\}$ in t in the uniform
operator topology uniformly for s. Hence P_{2} maps B_{k} into a family of equicontinuous functions.

It remains to prove that $V(t)=\left\{\left(P_{2} x\right)(t): x \in B_{y\}}\right.$ is relatively compact in $X, V(0)$ is relatively compact in X. Let 0 $<t \leq T$ be fixed, $0<\epsilon<t$, for $x \in B_{k}$, we define

$$
\begin{gathered}
\left(P_{2}, \in^{x}\right)(t)=U(t, 0) x(0)+\int_{0}^{t-\epsilon} U(t, s) G(s, u(s)) d s \\
\quad+\int_{0}^{t_{1-\epsilon}} U(t, s) K(s, x(s) \\
\left.\int_{0}^{s} k(s, \tau, x(\tau)) d \tau, \int_{0}^{T} h(s, \tau, x(\tau)) d \tau\right) d s \\
+U(t, t-\epsilon) \int_{0}^{t-\epsilon} U(t-\epsilon, t) G(s, u(s)) d s \\
+U(t-\epsilon, s) \int_{0}^{t_{1-\epsilon}} U(t-\epsilon, s) K(s, x(s) \\
\left.\int_{0}^{s} k(s, \tau, x(\tau)) d \tau, \int_{0}^{T} h(s, \tau, x(\tau)) d \tau\right) d s
\end{gathered}
$$

Then from the compactness of $U(t, s)(t-s>0)$, we obtain that

$$
V_{\in}(\mathrm{t})=\left\{\left(\mathrm{P}_{2}, \mathrm{E}^{x}\right)(t): x \in B_{y}\right\}
$$

is relatively compact in X for every, $0<\epsilon<t$. Mortover, $x \in B_{y}$, we have

$$
\begin{gathered}
\left\|\left(P_{2} x\right)(t)-\left(P_{2}, \epsilon^{x}\right)(t)\right\| \leq \int_{t-\epsilon}^{t}\|U(t, s) G(s, u(s))\| d s \\
+\int_{t-\epsilon}^{t}\|U(t, s)\| \| K\left(s, x(s), \int_{0}^{s} k(s, \tau, x(\tau)) d \tau\right. \\
\int_{0}^{T} h(s, \tau, x(\tau) d \tau \| \\
\leq M \int_{t-\epsilon}^{t} g_{k}(s) d s+ \\
M \int_{t-\epsilon}^{t} \mu_{r}(s) d s
\end{gathered}
$$

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

Therefore, there are relatively compact sets arbitrarily close to the set $V(t)$. Hence the set $V(t)$ is also relatively compact in X.
Thus by Arzela-Ascoli theorem P_{2} is compact operator. These arguments above enable us to conclude that $P=P_{1}+P_{2}$ is condense mapping on B_{k}, and by Theorem 2.1 there exists a fixed point $z($.$) for P$ on B_{k}, therefore the nonlocal Cauchy problem (1.1) has mild solution. Then the proof is completed.

REFERENCES

[1] M. Adimy and K. Ezzinbi, A class of linear partial neutral functional differential equations with nondense domain, J. Differential Equations, 147(1998) 285-332.
[2] D. Bahuguna and S. Agarwal, Approximations of solutions to neutral functional differential equations with nonlocal history conditions, J. Math. Anal.
Appl., 317 (2006) 583-602.
[3] K. Balachandran and M. Chandrasekaran, Existence of solutions of a de-lay differential equation with nonlocal condition, Indian J.Pure appl. Math., 27(1996,443-449.
[4] K. Balachandran and F. Paul Samuel, Existence of solutions for quasilinear delay integrodifferential equations with nonlocal conditions, Electronic J.Di_erential Eqns., 6 (2009), 1-7.
[5] K. Balachandran, R. Sakthivel: Existence of solutions of neutral functional integrodi_erential equation in Banach space, Proc. Indian Acad. Sci.Math.Sci., 109 (1999) 325 - 332.
[6] M. Benchohra and S.K. Ntouyas: Nonlocal Cauchy problems for neutral functional Differential and integrodifferential inclusions, J. Math. Anal. Appl.,258 (2001) 573-590.
[7] L. Byszewski and H. Akca, Existence of solutions of semilinear functional differential evolution nonlocal problem, Nonl.Anal.,34(1998),65-72.
[8] L. Byszewski, Theorem about existence and uniqueness of a solution of a semilinear evolution nonlocal Cauchy problem,
J.Math.Anal.Appl.,162(1991),496-505.
[9] L. Byszewski, Uniqueness criterion for solution to abstract nonlocal Cauchy problem, J. Appl. Math. Stoch. Anal., 6 (1993), 49-54.
[10] A. Fridman, Partial Differential Equations, Holt, Rienhat and Winston, New York, 169.
[11] X. Fu, On solutions of neutral nonlocal evolution equations with nondense domain, J. Math. Anal. Appl., 299(2004), 392-410.
[12] K. Fu and K. Ezzinbi, Existence of solution for neutral functional evolution equations with nonlocal conditions, Nonl. anal., 54(2003), 215-227.
[13] J.K. Hale, Partial neutral functional-differential equations, Rev. Roumaine Math. Pures Appl., 39 (1994) 339-344.
[14] J.K. Hale and M. Verduyn Lunel Sjoerd, Introduction to Functional Differential Equations, Applied Math. Sci., 99. Springer-Verlag, New York, 1993.
[15] E.Hern_andez: Existence results for partial neutral functional differential equations with nonlocal conditions, Cadenos De Mathematica., 02 (2001) 239 250.
[16] E. Hern_andez, Existence results for partial neutral integro-differential equations with unbounded delay, J. Math.Anal. Appl., 292 (2004) 194-210.
[17] E. Hern_andez and H.R. Henr__quez, Existence of periodic solutions of partial neutral functionaldifferential equations with unbounded delay, J. Math. Anal.Appl. 221 (2) (1998) 499-522.
[18] E. Hern_andez and H.R. Henr__quez, Existence results for partial neutral functional-differential equations with unbounded delay, J. Math. Anal. Appl., 221 (1998) 452 475.
[19] Y. Lin and H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonl. anal., 26(1996), 1023-1033.
[20] C.M. Marle, Measure et Probabilities, Herman, Paris, 1974.
[21] F. Paul Samuel and K. Balachandran, Existence results for impulsive quasilinear integrodifferential equations in Banach spaces, Vietnam Journal of Math., 38 (2010), 305-321.
[22] A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, SpringerVerlag, New York, 1983.10
[23] S.M. Rankin III, Existence and asymptotic behavior of a functional differential equations in Banach space, J.Math.Anal.Appl., 88(1982), 531-542.
[24] B.N. Sadovskii, On a fixed point principle, Funct. Anal. Appl., 1(1967), 7476.
[25] J.Wu and H. Xia, Self-sustained oscillations in a ring array of coupled lossless transmission lines, J. Differential Equations, 124 (1996) 247-278.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

