

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 2 Issue: VI Month of publication: June 2014

DOI:

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

A Bird Eye Review on Reduced Time Complexity by Using Data Mining and Fuzzy Techniques

Rohit Miri¹, DrPriyanka Tripathi², S.R.Tandan³,

^{1,3}Department of Computer Science & Engineering

Dr. C.V. Raman University, Kota, Bilaspur, India (C.G.)

²Department of Computer Technology

NITTTR, Bhopal (M.P.)

Abstract: In this paper, we have reviewed various research papers to know the depth knowledge in the field of reduced time complexity by using data mining or fuzzy Logic technique or combined approached. How to discard or eliminate the large data set to small data set. We keep only that data set from large data sets which are important or useful for making decision system.

Keywords: Bird Eye Review, Reduced Time Complexity, Data Mining, Fuzzy Logic.

1. INTRODUCTION

Now a day's storage of huge amount of data is not a big problem. The problem is how access the data in fast and efficient manner. We can store huge amount of data by investing less money. Time is very important to every people as compared to money. It is very important to filter those data that are not important in any decision making. If we are not able to filter these data then the operational time will be increases. My aim is to reduce the operation time of

large data set by eliminating large data by using fuzzy logic and data mining association algorithm. Now a day's it is very challenging task. Fuzzy logic plays an important role where human being is unable to provide the answer. Data mining is very useful when we need some kind of prediction. When we combined both these technology then we get some excellent result on the field of reduced time complexity.

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIE NCE AND ENGINEERING TECHNOLOGY (IJRASET)

2. LITERATURE REVIEW

S. N	Authors	Heading	Work Done	Technology Used	Future work /Drawback	Publication	Year
0.	Mehmet	Efficient	Fuzzy set is calculated automatically by	CLARANS and	Later fuzzy set is calculated by	Springer	2002
1.	Kaya,Red	Automated Mining	CURE and CLARANS algorithm.	CURE. clustering	online analytical processing (OLAP)	Springer	2002
	aAlhajj,,	of Fuzzy	Author is not more concentrated on	algorithm	.it uses only one centroid to find the		
	FarukPola	Association Rules	reduced time complexity. Process for	aigoriumi	triangular membership function.		
	t, and	Association Rules	finding fuzzy mining association rule is		triangular membersing runction.		
	AhmetArs		simple by using this.Execution time of				
	lan		both the technique is compared.				
2.	Tzung-Pei	A	In this paper , the authors are	AprioriTid and	Now a days, there are fast data	Science	2004
2.	Hong,	fuzzy AprioriTid	concentrated on reduced time complexity	Fuzzy Logic	mining association rule are available.	Direct	2004
	Chan-	mining algorithm	by using the data mining fuzzy based	Tuzzy Logic	They uses triangular membership	Direct	
	Sheng	with reduced	association rule.		function. They assume the range of		
	Kuo,	computational	association rule .	4	the linguistic variable. There will be		
	Shyue-	time			some mathematical calculation.		
	Liang	time		177	some mathematical calculation.		
	Wang						
3.	Thomas	Refinement of	It reduces the computation cost of the	Disjunctive		ELSEVIER	2007
٥.	Sudkamp	temporal	process by using disjunctive	generalization and		ELSEVIER	2007
	*	constraints in	generalization and Temporal	temporal			
		fuzzy associations	specification. It is mainly deal with the	specification			
		ruzzy ussociations	search of data from large database.	specification			
4.	E.	A Better	They have implemented the data mining	AprioriTID ,	Authors of this paper suggested for	National	2008
	Ramaraj,	Performed	association rule by three different	TRApriori, HRA	its future work. For further	Conference	
	K Ramesh	Transaction	algorithm. i.eAprioriTID, TRApriori,		efficiency we can use Eclat	INDIACom	
	Kumar,	Reduction	HRA. They have reduces the time		algorithm.		
	N	Algorithm for	complexity of algorithm in efficient way.				
	Venkatesa	Mining Frequent	Among three the TRApriori is very fast				
	n	Item sets from	data mining association algorithm.				
		large voluminous					
		Database					
5.	NeeluKha	An Algorithm for	Uses multi dimension techniques for	multidimensional	We can use hybrid dimension	(IJCSIS)	2009
	re,	Mining	fuzzy association rule.	association rules	association rule to apply fuzzy	International	
	NeeruAdl	Multidimensional			mining association algorithm	Journal of	
	akha, K.	Fuzzy Assoiation				Computer	
	R.	Rules				Science and	
	Pardasani					Information	
						Security,	
6.	Jr-Shian	CPDA Based	They partitioned the fuzzy linguistic	cumulative	They uses the AprioriTid data	2009	2011

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIE NCE AND ENGINEERING TECHNOLOGY (IJRASET)

	Chen,	Fuzzy Association	variable by using cumulative probability	probability	mining association rule to find out	International	
	Hung-	Rules for Learning	distribution approach (CPDA) to	distribution	the frequent item set by reducing	Conference	
	Lieh	Achievement	improve the persuasiveness of universe	approach (CPDA).	large data set into smaller data set.	on Machine	
	Chou,	Mining	of disclosure. Later it fuzzifies and		They can improve their performance	Learning	
	Ching-		applies data mining association rule for		by using fast data mining association	and	
	Hsue		frequent pattern. It reduces the operation		algorithm like TRApriori,	Computing	
	Cheng,		time of the algorithm.		HRApriori.	IPCSIT vol.3	
	Jen-Ya					(2011) ©	
	Wang				q	(2011)	
						IACSIT	
						Press,	
						Singapore	
7.	Arpna	Generating 3rd	They perform multilevel data mining	data	They uses coding technique to	SCIENCED	2013
	Shrivastav	Level Association	association rule in place of single level	coding and data	reduce the size of the actual database	OMAIN	
	a1*, R. C.	Rules Using Fast	association rule by using data coding and	cleaning techniques.	and searching is very easy due to the	international	
	Jain and	Apriori	data cleansing techniques.		data cleaning technique used in this		
	A. K.	Implementation		· M·	paper. It is difficult to know the		
	Shrivastav				coding of each item without linking		
	a				with the actual name of the item. I		
					thing it required extra storage area		
					when we know the name of the		
					actual item in place of code. We can		
					increase the level of association rule.		
8.			In this paper, the authors are trying to		The approach reduces the search	International	2013
	Hima	Mining	eliminate the redundancy of large data	Fuzzy Frequent	costs to a great extend. FP growth	Journal Of	
	Suresh1,	Association Rules	set by using hybrid approach in a time	Pattern (FP) growth	approach provides less execution	Computation	
	Dr.	From Time Series	series of quantitative data. They find the	approach	time compared to FA approach. their	al	
	Kumudha	Data Using Hybrid	frequent item set without candidate		approach takes some cost because of	Engineering	
	Raimond	Approaches	generation. They eliminated the		the fuzzy FP tree and hybrid	Research	
			procedure of scanning the data again and		approach.		
			again. Their approach is suitable for both				
	m 5:	7700	the large data set and small data set.			*	2012
9.	Tzung-Pei	An Effective	The authors concentrate on data	Fuzzy Apriori-	On future work , the author	International	2013
	Hong,	Gradual Data-	reduction and prove the efficiency of	based techniques	suggested that the performance can	Journal of	
	Guo-	Reduction	large data set by experimental result. On		be improve the other data mining	Fuzzy	
	Cheng	Strategy for Fuzzy	experimental result the performance is		algorithm by this technique.	Systems	
	Lan, Yi-	Itemset Mining	calculated on time domain. They		Maintenance problem of fuzzy logic		
	Hsin Lin,		compared the result of three technique.		can be maintained.		
	and						
	Shing-Tai						

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIE NCE AND ENGINEERING TECHNOLOGY (IJRASET)

	Pan						
10.			Authors use classification technique to		Uses multilevel technique for finding	International	2013
	Usha	Mining Multi	linguistic variable of fuzzy logic to	fuzzy-set concepts	association rule.	Journal of	
	Rani1, R	Level Association	improve the performance of large data	to retrieve		Emerging	
	VijayaPra	Rules Using Fuzzy	set.	multilevel		Technology	
	kash, Dr.	Logic		association rules		and	
	A.					Advanced	
	Govardha					Engineering	
	n						
11.			They reduced the time complexity of		Performance may be little bit slowly		
	RuchiBha	Effective Positive	program without calculating the	FP (Frequent	because of FP tree.	International	2013
	rgava,	Negative	candidate key.	pattern) tree		Journal of	
	Shrikant	Association Rule	They decomposes the positive and			Advanced	
	Lade	Mining Using	negative association rule into three parts			Research in	
		Improved	.firstly calculates frequent item set,			Computer	
		Frequent Pattern	secondly calculated positive association			Science and	
		Tree	rule and lastly calculated negative			Software	
			association rule.			Engineering	
12.			They implemented the various data		Candidate item set need not to be		2013
	Kanu	Comparison of	mining association algorithm on the	Rule mining;	calculated.	International	
	Patel,	Various	domain runtime, memory usage and	Association rules;		Journal of	
	Vatsal	Association Rule	minimum support of item set. Found that	multilevel		Advanced	
	Shah,	Mining Algorithm	the FP growth algorithm is better than	association rules;		Research in	
	Jitendra	on Frequent	the traditional algorithm.	FP tree;		Computer	
	Patel,	Itemsets				Science and	
	Jayna					Software	
	Donga,					Engineering	
13.	N S	Gain ratio based	The proposed gain ratio based ranker	gain ratio based	Weighted value can also calculated	Indian	2014
	NITHYA	fuzzy weighted	fuzzy weighted association rule mining	fuzzy weighted	by automatic expert system.	Academy of	
	and K	association rule	reduce the operational time, reduces the	association rule	Intrusion detection system is also	Sciences	
	DURAIS	mining	exponential growth of rules produced by	mining	performed.		
	WAMY	classifier for	fuzzy association rule mining and		But we can also improve the		
		medical diagnostic	increase the accuracy of the		operational time.		
		interface	classification.				
14.	Mohamm	AN IMPROVED	Authors main focus is to reduce the	Modified the actual	They reduce the time complexity by	International	2014
	ed Al-	APRIORI	computational time of process by	Apriori algorithm.	approximate 68 %. But the	Journal on	
	Maolegi1,	ALGORITHM	modifying the actual Apriori algorithm		operational time used for finding the	Natural	
	BassamAr	FOR			first item set is unchanged.	Language	
	kok	ASSOCIATION				Computing	
		RULES				(IJNLC)	

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIE NCE AND ENGINEERING TECHNOLOGY (IJRASET)

15.	ZHIYON	CPM Algorithm	It uses tree data structure to find the	CPM (comparative	They uses three complex techniques	JOURNAL	2014
	G MA,+,	for Mining	frequent pattern of large database to the	pattern	CPM,TCM ,ACM to reduces the size	OF	
	QINGYI	Association Rules	bottom of leaf of the tree. It compresses	mapping)	of database. I think ,Its algorithm	INFORMAT	
	NG QIU	from Databases of	the actual large database by using the	TCM (transaction	takes some more time for the	ION	
	AND	Engineering	Boolean matrix.	combination matrix)	operation due to three complex	SCIENCE	
	PEIEN	Design Instances		ACM (attribute	technique used .	AND	
	FENG			combination matrix)		ENGINEERI	
						NG	
16.			They use classification technique to		It optimizes the data set by using	Research	2014
	K.	An Innovative	apply fuzzy data mining association rule	FABCO(ABC (Artificial Bee Colony).	Journal of	
	Sathesh	Potential on Rule	to improve the performance of large data		Technique is very strong but they	Applied	
	Kumar	Optimization	set.	Fuzzy Artificial	can reduce the data set more.	Sciences,	
	and M.	using Fuzzy		Bee Colony		Engineering	
	Hemalath	Artificial Bee		Optimization)		and	
	a	Colony		4		Technology	

3. CONCLUSION

In this paper we have presented the literature review in the field of reduced time complexity by using data mining and fuzzy logic techniques and found that still we can improve the operational of time of large data sets. Some of the paper presented strong logic for the same. Many papers have given their future work to improve the performance of their paper. We can also reduce the time complexity of any large data set from the past research work. We can reduce the large data set up to 70% and take less than 30% without affecting the result.

4. ACKNOWLEDGEMENTS

I would like to thank my research guide Dr. Priyanka Tripathi for her fruitful support throughout the research work. I also like to thank my wife Pushpa and cute Bobo for their motivation and co-operation received time to time.

References

- [1] Mohammed Al-Maolegi ,BassamArkok "An improved apriori algorithm for Association rules" international journal on natural language computing volume 3, no-1, febuary 2014.
 - [2] N S Nithya and K Duraiswami "Gain ratio based fuzzy weighted association rule mining classifier for medical diagnostic interface" vol 39 part 1 ,febuary 2014 , pp 39-52 .
 - [3] K Sathesh Kumar and M Hemlatha "An innovative potential on rule optimization using fuzzy artificial bee colony" Research journal of applied science, engineering and Technology.. volume 2627-2633, ISSN:2040-7459, E-issn:2040-7467, April 05 2014.
 - [4]zhiyong MA , QingyingQiu and PeieenFeng "CPM algorithm for mining association rules from databases of engineering design+n instances." Journal of information science and engineering vol30 , 463-481 (2014)
 - [5]Arpnashrivastava , R . C Jain and A K shrivatava "Generating 3rd level association rule using fast apriori implementation."British journal of mathematics and computer science. Volume 4(2):241-251, 2014
 - [6] Neelukhare ,neeruadlakha, K R pardasani "An algorithm

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

- for mining multidentional fuzzy association rule" international journal of computer science and information security vol 5, no-1,2009
- [7] Thomas sudkomp "Refinement of temporal constraints in fuzzy association" volume 48(2008) 14 June 2007
- [8] Tiberiu Ban, Fuzzy computing for complexity level of evaluation tests. StudiaUniv, Babes-Bolai, Informatics, Volume LVIII number 1, 2013
- [9]Tzung-Pei Honga, Chan-Sheng Kuob, Shyue-Liang Wangc "A fuzzy AprioriTid mining algorithm with reduced computational time" Volume 5, Issue 1, December 2004, Pages 1–1
- [10] Tzung-pei-Hang, Guo-Cheng lan, Yi-Hsinlin and Shing-tai pan. An effective gradual data reduction strategy for fuzzy item set mining international journal of fuzzy systems, vol 15 no2 June 2013.
- [11]Usha Rani, R VijayaPrakkash, Dr A. Gavardhan,Mining Multi-level association Rules using fuzzy, International journal of emerging technology and advanced engineering. Volume 3, issue 8, August 2013.
- [12] RuchiBhargava ,Shrikant lade , Effective positive negative association rule mining using improved frequent pattern tree. International journal of advanced research in computer science and software engineering. Volume 3 , issue 4 April 2013 .
- [13] DharmendraKumar, Deepak Bhardwaj rise of data mining: Current and Future application areas. IJCSI international journal of computer science issue vol 8 issue 5 No1 September 2011.
- [14] KanuPatel ,Vatsalshal , jitendrapatel , jayna donga comparision of various association rule mining algorithm on frequent item sets. International journal of advanced research in computer Science and software engineering Vol-3 issue II Nov 2013 .
- [15] JrShianchen hung liehchou, ChingHsue Cheng, jen-ya Wang CPDA Based Fuzzy association rules for learning

- achievement mining, 2009 international conference on machine learning and computing IPCSIT vol3 (2011) IACSIT PRESS SINGAPUR.
- [16]E Ramaraj, K Rameshkumar, N Venkatesan"A better performed transaction Reduction algorithm for mining frequent item set from large voluminous database"Volume 5, Issue 1, December 2004, Pages 1–10
- [17] R. Agrawal, T. Imielinksi and A. Swami, "Mining association rules between sets Submitted manuscript 24 of items in large database," The 1993 ACM SIGMOD Conference, Washington DC, USA, 1993.
- [18] R. Agrawal, T. Imielinksi and A. Swami, "Database mining: a performance perspective," IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No.6, 1993, pp. 914-925.
- [19] R. Agrawal, R. Srikant and Q. Vu, "Mining association rules with item constraints," The Third International Conference on Knowledge Discovery in Databases and Data Mining, Newport Beach, California, August 1997.
- [20] R. Agrawal and R. Srikant, "Fast algorithm for mining association rules," The International Conference on Very Large Data Bases, 1994, pp. 487-499.
- [21] A. F. Blishun, "Fuzzy learning models in expert systems," Fuzzy Sets and Systems, Vol. 22, 1987, pp 57-70.
- [22] C. H. Cai, W. C. Fu, C. H. Cheng and W. W. Kwong, "Mining association rules with weighted items," The International Database Engineering and Applications Symposium, 1998, pp. 68-77.
- [23] L. M. de Campos and S. Moral, "Learning rules for a fuzzy inference model," Fuzzy Sets and Systems, Vol. 59, 1993, pp.247-257.
- [24] R. L. P. Chang and T. Pavliddis, "Fuzzy decision tree algorithms," IEEE Transactions on Systems, Man and Cybernetics, Vol. 7, 1977, pp. 28-35. Submitted manuscript 25

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

- [25] M. Delgado and A. Gonzalez, "An inductive learning procedure to identify fuzzy systems," Fuzzy Sets and Systems, Vol. 55, 1993, pp. 121-132.
- [26] W. J. Frawley, G. Piatetsky-Shapiro and C. J. Matheus, "Knowledge discovery in databases: an overview," The AAAI Workshop on Knowledge Discovery in Databases, 1991, pp. 1-27.
- [27] A.Gonzalez, "A learning methodology in uncertain and imprecise environments," International Journal of Intelligent Systems, Vol. 10, 1995, pp. 57-371.
- [28] T. P. Hong, C. H. Chen, Y. L. Wu and Y. C. Lee, "Using divide-and-conquer GA strategy in fuzzy data mining", The Ninth IEEE Symposium on Computers and Communications, 2004.
- [29] T. P. Hong and J. B. Chen, "Finding relevant attributes and membership functions," Fuzzy Sets and Systems, Vol. 103, No. 3, 1999, pp.389-404.
- [30] T. P. Hong and J. B. Chen, "Processing individual fuzzy attributes for fuzzy rule induction," Fuzzy Sets and Systems, Vol. 112, No. 1, 2000, pp. 127-140.
- [31] T. P. Hong and C. Y. Lee, "Induction of fuzzy rules and membership functions from training examples," Fuzzy Sets and Systems, Vol. 84, 1996, pp. 33-47.
- [32] T. P. Hong, C. S. Kuo, and S. C. Chi, "Mining association rules from quantitative data," Intelligent Data Analysis, Vol. 3, No. 5, 1999, pp. 363-376. A. Kandel, Fuzzy Expert Systems, CRC Press, Boca Raton, 1992, pp.8-19. Submitted manuscript 26
- [33] H. Mannila, "Methods and problems in data mining," The International Conference on Database Theory, 1997.
- [34] R. Srikant and R. Agrawal, "Mining quantitative association rules in large relational tables," The 1996 ACM SIGMOD International Conference on Management of Data, Monreal, Canada, June 1996, pp. 1-12.
- [35] C. H. Wang, J. F. Liu, T. P. Hong and S. S. Tseng, "A

- fuzzy inductive learning strategy for modular rules," Fuzzy Sets and Systems, Vol.103, No. 1, 1999, pp.91-105.
- [36] S. Yue, E. Tsang, D. Yeung and D. Shi, "Mining fuzzy association rules with weighted items," The IEEE International Conference on Systems, Man and Cybernetics, 2000, pp. 1906-1911.
- [37] L. A. Zadeh, "Fuzzy sets," Information and Control, Vol. 8, No. 3, 1965, pp. 338-353.
- [38]Mehmet Kaya1,*, Reda Alhajj1,**, Faruk Polat2, and Ahmet Arslan3 "Efficient Automated Miningof FuzzyAssociation Rules "DEXA 2002, LNCS 2453, pp. 133-142, 2002.

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

RohitMiriis currently pursuing Ph.D. and H.O.D of Computer Science and Engineering, Dr. C.V. Raman University, Bilaspur, India. He received his B.E. degree in Computer Science and Engineering from the NIT, Raipur (formally known as Government Engineering College, Raipur) in 2004, and M. Tech degree in Computer Science from College of Engineering, Pune Maharashtra, India. IN 2008 .His research interests include application of Artificial intelligence in robotics, Web Technologies, Data mining & Warehousing ,Cellular Technology.

Dr Priyanka Tripathi is working as an Associate Professor in the Department of Computer Application at National Institute of Technical Teachers Training and Research, Bhopal. She has also worked on various projects in Tata Consultancy Services. She has done MCA in Govt Engineering College Raipur. Ph.D from Maulana Azad National Institute of Technology, Bhopal. Working in the area of web Technology,networking, agile computing. Presented various paper in International Conferences at USA, Thailand etc. Also Chaired sessions in international conferences.

S.R. Tandanis currently Ph.D. and Assistant Professor in the Department of Computer Science and Engineering, Dr. C.V. Raman University, Bilaspur, India. He received his B.E. degree in Computer Science and Engineering from the NIT, Raipur (formally known as Government Engineering College, Raipur) in 2006, and M. Tech degree in Computer Science from Birla Institute of Technology, Mesra Ranchi, India (JH) In 2009. His research interests include application of Artificial intelligence in robotics, Soft Computing, Dynamic path planning and Mobile robot navigation in cluttered environments, Mobile Computing.

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)