

4 XI November 2016

www.ijraset.com Volume 4 Issue XI, November 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
127

A Scalable approach to detect the duplicate data
using Iterative parallel sorted neighbourhood

method
Dr. R. Priya1, Ms. Jiji. R2

1Head, Dept. of Computer Science, Sree Narayana Guru College, Coimbatore
2Research Scholar, Sree Narayana Guru College, Coimbatore

Abstract: Determining the redundant data in the data server is open research in the data intensive application. Traditional
Progressive duplicate detection algorithms namely progressive sorted neighbourhood method (PSNM) with scalable approaches
named as Parallel sorted neighbourhood Method, which performs best on small and almost clean datasets, and progressive
blocking (PB), which performs best on large and very dirty datasets. Both enhance the efficiency of duplicate detection even on
very large datasets; In this paper , we propose Iterative Progressive Sorted Neighbourhood method which is treated as
progressive duplicate record detection in order to detect the duplicate records in any kind of the dataset. In comparison to
traditional duplicate detection, progressive duplicate record detection satisfies two conditions through improved early quality.
Iterative algorithms on PSNM and PB dynamically adjust their behaviour by automatically choosing optimal parameters, e.g.,
window sizes, block sizes, and sorting keys, rendering their manual specification superfluous. In this way, we significantly ease
the parameterization complexity for duplicate detection in general and contribute to the development of more user interactive
applications: We can offer fast feedback and alleviate the often difficult parameterization of the algorithms. The contrition of the
work is as follows, we propose three dynamic progressive duplicate detection algorithms, PSNM, Iterative PSNM parallel and
PB, which expose different strengths and outperform current approaches. We define a novel quality measure for progressive
duplicate detection to objectively rank the performance of different approaches. The Duplicate detection algorithm is evaluated
on several real-world datasets testing our own and previous algorithms. The duplicate detection workflow comprises the three
steps pair-selection, pair-wise comparison, and clustering. For a progressive workflow, only the first and last step needs to be
modified. The Experimental results prove that proposed system outperforms the state of arts approaches accuracy and efficiency.
Keywords – Duplicate Detection, Record linkage, Data Cleansing, Deduplication

I. INTRODUCTION
 Duplicate detection is the process of identifying multiple representations of same real world entities. Progressive duplicate
detection identifies most duplicate pairs early in the detection process[1]. Instead of reducing the overall time needed to finish the
entire process, progressive approaches try to reduce the average time after which a duplicate is found. Early terminations, in
particular, then yields more complete results on a progressive algorithm than on any traditional approach[2][3][4]. Today, duplicate
detection methods need to process ever larger datasets in ever shorter time: maintaining the quality of a dataset becomes
increasingly difficult. We present two novel, progressive duplicate detection algorithms that significantly increase the efficiency of
finding duplicates if the execution time is limited: They maximize the gain of the overall process within the time available by
reporting most results much earlier than traditional approaches. Iterative algorithms on PSNM [5] and PB [6] dynamically adjust
their behaviour by automatically choosing optimal parameters, e.g., window sizes, block sizes, and sorting keys, rendering their
manual specification superfluous. In this way, we significantly ease the parameterization complexity for duplicate detection in
general and contribute to the development of more user interactive applications: We can offer fast feedback and alleviate the often
difficult parameterization of the algorithms. The contrition of the work is as follows, we propose three dynamic progressive
duplicate detection algorithms, PSNM, Iterative PSNM parallel and PB, which expose different strengths and outperform current
approaches [7]. We define a novel quality measure for progressive duplicate detection to objectively rank the performance of
different approaches. We exhaustively evaluate on several real-world datasets testing our own and previous algorithms. The
duplicate detection workflow comprises the three steps pair-selection, pair-wise comparison, and clustering. For a progressive
workflow, only the first and last step needs to be modified. The rest of paper is organized as follows, Section 2 describes the related

www.ijraset.com Volume 4 Issue XI, November 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
128

work, section 3 describes the proposed model in detail, section 4 deals with experimental analysis and finally section 5 is concluded.

II. RELATED WORK
A. Record linkage: Making maximum use of the discriminating power of identifying Information
Special difficulties are encountered in devising reliable systems for searching and updating any large files of documents that must be
identified primarily on the basis of names and other personal particulars. The underlying problem is that of making nearly maximum
use of items of identifying information that are individually unreliable but that may collectively be of considerable discriminating
power [8]. Rules that can be applied generally to name retrieval systems have been developed in a methodological study of the
linkage of vital and health records into family groupings for demographic research purposes. These rules are described, and the
ways in which information utilization for matching may be optimized are discussed.

B. Parallel sorted neighbourhood blocking with MapReduce
It enables the efficient parallel execution of data-intensive tasks such as entity resolution on large datasets. We investigate
challenges and possible solutions of using the MapReduce programming model for parallel entity resolution. In particular, we
extract and evaluate two MapReduce-based implementations for Sorted Neighborhood blocking that either use multiple MapReduce
jobs or apply tailored data replication [9].

III. PROPOSED MODEL
A. Data partitioning
In this Module, we partition the large record into different random cluster in order to achieve the reduced time taken for the data
processing and early detection of the duplicates inside the cluster. Sampling Method with the threshold limit (size) is specified in
accessing the data with the data type from the database.

1) Progressive sorted neighbourhood method: PSNM sorts the input data using a predefined sorting key and only compares
records that are within a window of records in the sorted order. The intuition is that records that are close in the sorted order are
more likely to be duplicates than records that are far apart, because they are already similar with respect to their sorting key.
More specifically, the distance of two records in their sort ranks (rank-distance) gives PSNM an estimate of their matching
likelihood. The PSNM algorithm uses this intuition to iteratively vary the window size [10], starting with a small window of
size two that quickly finds the most promising records. The PSNM algorithm differs by dynamically changing the execution
order of the comparisons based on intermediate results (Look-Ahead). Furthermore, PSNM integrates a progressive sorting
phase (Magpie Sort) and can progressively process significantly larger datasets.

Algorithm
Parameters considered in the Analysing multiple representation for data
a) Reference Key D is a reference to the data, which has not been loaded from disk yet.
b) The sorting key K defines the attribute or attributes combination that should be used in the sorting step.
c) Window key W specifies the maximum window size, when using early termination, this parameter can be set to an

optimistically high default value.
d) Key I define the enlargement interval for the progressive iterations.
e) Partitioning Condition
f) The number of necessary partitions pNum, while considering a partition overlap records to slide the window across their

boundaries.
g) Record should be ordered based on the sorting key using progressive Sorting function.

B. Duplicates Detection using Iterative Parallel sorted neighbourhood method
Duplicates are detected based on the window size by gradually increasing to estimate the close neighbours and less far way
neighbours later on For each of these progressive iterations[11], PSNM reads the entire dataset once. Since the load process is done
partition-wise, PSNM sequentially iterates and loads all partitions.

www.ijraset.com Volume 4 Issue XI, November 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
129

Figure 1. Architecture Diagram of the proposed model

To process a loaded partition, PSNM first iterates overall record rank-distances dist that are within the current window interval ,
PSNM then iterates all records in the current partition to compare them to their dist-neighbor. The comparison is executed using the
compare (pair) function.

C. progressive blocking
Blocking algorithms assign each record to a fixed group of similar records (the blocks) and then compare all pairs of records within
these groups. Progressive blocking is a novel approach that builds upon an equidistant blocking technique and the successive
enlargement of blocks. Like PSNM, it also pre-sorts the records to use their rank-distance in this sorting for similarity estimation.
Based on the sorting, PB first creates and then progressively extends a fine-grained blocking. These block extensions are
specifically executed on neighbourhoods around already identified duplicates, which enables PB to expose clusters earlier than
PSNM.
Block Comparison matrix is created to sort the records that form a similarity index is considered to be duplicate. In case of ties, the
algorithm prefers block pairs with a smaller rank-distance[12], because the distance in the sort rank still defines the expected
similarity of the records. The extensions continue until all blocks have been compared or a distance threshold for all remaining
block pairs has been reached.
We modelled a priority queue to frequently read the top elements from this list to estimate the density of duplicate items which
exceeds the maximum block range. The identified duplicate later rank the duplicate density of this block pair with the density in
other block pairs. Thereby, the amount of duplicates is normalized by the number of comparisons, because the last block is usually
smaller than all other blocks. If the PB algorithm is not terminated prematurely, it automatically finishes when the list of similar
Pairs is empty,

D. Blocking Techniques
A block pair consisting of two small blocks defines only few comparisons. Using such small blocks, the PB algorithm carefully
selects the most promising comparisons and avoids many less promising comparisons from a wider neighbourhood[13]. However,
block pairs based on small blocks cannot characterize the duplicate density in their neighbourhood well, because they represent a
too small sample. A block pair consisting of large blocks, in contrast, may define too many, less promising comparisons, but
produce better samples for the extension step. The block size parameter S, therefore, trades off the execution of non-promising

www.ijraset.com Volume 4 Issue XI, November 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
130

comparisons and the extension quality.

1) Attribute Concurrency: The best sorting or blocking key for a duplicate detection algorithm is generally unknown or hard to
find. Most duplicate detection frameworks tackle this key selection problem by applying the multi-pass execution method. This
method executes the duplicate detection algorithm multiple times using different keys in each pass. However, the execution
order among the different keys is arbitrary[14]. Therefore, favouring good keys over poorer keys already increases the
progressiveness of the multi-pass method. In this section, we present two multi-pass algorithms that dynamically interleave the
different passes based on intermediate results to execute promising iterations earlier. The first algorithm is the attribute
concurrent Iterative PSNM (AC-IPSNM), which is the progressive implementation of the multi-pass method for the IPSNM
algorithm, and the second algorithm is the attribute concurrent PB (AC-PB), which is the corresponding implementation for the
PB algorithm

IV. EXPERIMENTAL RESULTS
A. Dataset Collection and Data Parsing
The DBLP dataset is used in this work. The DBLP-dataset2 is a bibliographic index on computer science journals and proceedings
which is represented as XML File. Data parsing is applied for breaking them up into parts of data (for example, the nouns (objects),
verbs (methods), and their attributes or options) which can then be managed into features and clusters.

B. Performance Evaluation
The proposed algorithms increase the efficiency of duplicate detection for any size of records in dataset with limited execution time;

Figure 2- Performance Evaluation on Execution Time of the Progressive Duplicate Detection Methods

The system is capable for dynamic change and the ranking of duplicates estimated using the accuracy parameters such as precision,
recall and f-measure with the existing solution treated as progressive sorted neighbourhood method. The comparison based on
intermediate results to execute different passes of any order.

Figure 3- Performance Evaluation on accuracy parameter of the Progressive duplicate Detection Methods

Using this measure, experiments showed that proposed iterative approaches outperform the traditional SNM by up to 100 percent
and related work by up to 30 percent.

www.ijraset.com Volume 4 Issue XI, November 2016
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
131

Table 1: Performance Evaluation of progressive duplicate detection algorithms
Technique Execution

Time
Precision Recall F-

Measure
Duplicates
detected

Progressive Sorted
neighbourhood method

100ms
per
dataset

90 45 85 120 Records
per milli
seconds

Iterative parallel
Sorted Neighbourhood
Method

140ms
per
dataset

95 43 91

For the construction of a fully progressive duplicate detection workflow, we proposed an Iterative parallel Sorted neighbourhood
method and results is depicted
in the figure 2 and table 1.
The adaptations AC-Iterative PSNM and AC-PB use multiple sort keys concurrently to interleave their progressive iterations. By
analyzing intermediate results, both approaches dynamically rank the different sort keys at runtime, drastically easing the key
selection problem.

V. CONCLUSION
Iterative Parallel sorted neighbourhood method and progressive blocking has been designed and implemented. Both algorithms
increase the efficiency of duplicate detection for situations with limited execution time and high accuracy. They dynamically change
the ranking of comparison candidates based on intermediate results to execute promising comparisons first and less promising
comparisons later. To determine the performance gain of our algorithms, we proposed a novel quality measure for progressiveness
that integrates seamlessly with existing measures. Using this measure, experiments showed that our approaches outperform the
traditional SNM by up to 100 percent and related work by up to 30 percent. For the construction of a fully progressive duplicate
detection workflow, we proposed a progressive sorting method, Magpie, a progressive multi-pass execution model, Attribute
Concurrency, and an incremental transitive closure algorithm. The adaptations AC-Iterative PSNM and AC-PB use multiple sort
keys concurrently to interleave their progressive iterations. By analyzing intermediate results, both approaches dynamically rank the
different sort keys at runtime, drastically easing the key selection problem.

REFERENCES
[1] S. E. Whang, D. Marmaros, and H. Garcia-Molina, “Pay-as-you-go entity resolution,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 5, pp. 1111–1124, May

2012.
[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detection: A survey,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 1, pp. 1–16, Jan.

2007.
[3] F. Naumann and M. Herschel, An Introduction to Duplicate Detection. San Rafael, CA, USA: Morgan & Claypool, 2010.
[4] H. B. Newcombe and J. M. Kennedy, “Record linkage: Making maximum use of the discriminating power of identifying information,” Commun. ACM, vol. 5,

no. 11, pp. 563–566, 1962.
[5] M. A. Hern_andez and S. J. Stolfo, “Real-world data is dirty: Data cleansing and the merge/purge problem,” Data Mining Knowl. Discovery, vol. 2, no. 1, pp.

9–37, 1998.
[6] X. Dong, A. Halevy, and J. Madhavan, “Reference reconciliation in complex information spaces,” in Proc. Int. Conf. Manage. Data, 2005, pp. 85–96.
[7] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller, “Framework for evaluating clustering algorithms in duplicate detection,” Proc. Very Large Databases

Endowment, vol. 2, pp. 1282– 1293, 2009.
[8] O. Hassanzadeh and R. J. Miller, “Creating probabilistic databases from duplicated data,” VLDB J., vol. 18, no. 5, pp. 1141–1166, 2009.
[9] U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg, “Adaptive windows for duplicate detection,” in Proc. IEEE 28th Int. Conf. Data Eng., 2012, pp. 1073–

1083.
[10] S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles, “Adaptive sorted neighborhood methods for efficient record linkage,” in Proc. 7th ACM/ IEEE Joint Int. Conf.

Digit. Libraries, 2007, pp. 185–194.
[11] J. Madhavan, S. R. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, and A. Halevy, “Web-scale data integration: You can only afford to pay as you go,” in Proc.

Conf. Innovative Data Syst. Res., 2007.
[12] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy, “Pay-as-you-go user feedback for dataspace systems,” in Proc. Int. Conf. Manage. Data, 2008, pp. 847–860.
[13] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity joins,” in Proc. IEEE Int. Conf. Data Eng., 2009, pp. 916–927.
[14] P. Indyk, “A small approximately min-wise independent family of hash functions,” in Proc. 10th Annu. ACM-SIAM Symp. Discrete Algorithms, 1999, pp.

454–456.

