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Abstract: Determining the redundant data in the data server is open research in the data intensive application. Traditional 
Progressive duplicate detection algorithms namely progressive sorted neighbourhood method (PSNM) with scalable approaches 
named as Parallel sorted neighbourhood Method, which performs best on small and almost clean datasets, and progressive 
blocking (PB), which performs best on large and very dirty datasets. Both enhance the efficiency of duplicate detection even on 
very large datasets; In this paper , we propose Iterative Progressive Sorted Neighbourhood method which is treated as 
progressive duplicate record detection in order to detect the duplicate records in any kind of the dataset. In comparison to 
traditional duplicate detection, progressive duplicate record detection satisfies two conditions through improved early quality. 
Iterative algorithms on PSNM and PB dynamically adjust their behaviour by automatically choosing optimal parameters, e.g., 
window sizes, block sizes, and sorting keys, rendering their manual specification superfluous. In this way, we significantly ease 
the parameterization complexity for duplicate detection in general and contribute to the development of more user interactive 
applications: We can offer fast feedback and alleviate the often difficult parameterization of the algorithms. The contrition of the 
work is as follows, we propose three dynamic progressive duplicate detection algorithms, PSNM, Iterative PSNM parallel and 
PB, which expose different strengths and outperform current approaches.  We define a novel quality measure for progressive 
duplicate detection to objectively rank the performance of different approaches. The Duplicate detection algorithm is evaluated 
on several real-world datasets testing our own and previous algorithms.  The duplicate detection workflow comprises the three 
steps pair-selection, pair-wise comparison, and clustering. For a progressive workflow, only the first and last step needs to be 
modified. The Experimental results prove that proposed system outperforms the state of arts approaches accuracy and efficiency. 
Keywords – Duplicate Detection, Record linkage, Data Cleansing, Deduplication   

I. INTRODUCTION 
 Duplicate detection is the process of identifying multiple representations of same real world entities.  Progressive duplicate 
detection identifies most duplicate pairs early in the detection process[1]. Instead of reducing the overall time needed to finish the 
entire process, progressive approaches try to reduce the average time after which a duplicate is found. Early terminations, in 
particular, then yields more complete results on a progressive algorithm than on any traditional approach[2][3][4]. Today, duplicate 
detection methods need to process ever larger datasets in ever shorter time: maintaining the quality of a dataset becomes 
increasingly difficult. We present two novel, progressive duplicate detection algorithms that significantly increase the efficiency of 
finding duplicates if the execution time is limited: They maximize the gain of the overall process within the time available by 
reporting most results much earlier than traditional approaches. Iterative algorithms on PSNM [5] and PB [6] dynamically adjust 
their behaviour by automatically choosing optimal parameters, e.g., window sizes, block sizes, and sorting keys, rendering their 
manual specification superfluous. In this way, we significantly ease the parameterization complexity for duplicate detection in 
general and contribute to the development of more user interactive applications: We can offer fast feedback and alleviate the often 
difficult parameterization of the algorithms. The contrition of the work is as follows, we propose three dynamic progressive 
duplicate detection algorithms, PSNM, Iterative PSNM parallel and PB, which expose different strengths and outperform current 
approaches [7].  We define a novel quality measure for progressive duplicate detection to objectively rank the performance of 
different approaches. We exhaustively evaluate on several real-world datasets testing our own and previous algorithms.  The 
duplicate detection workflow comprises the three steps pair-selection, pair-wise comparison, and clustering. For a progressive 
workflow, only the first and last step needs to be modified. The rest of paper is organized as follows, Section 2 describes the related 
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work, section 3 describes the proposed model in detail, section 4 deals with experimental analysis and finally section 5 is concluded. 
 

II. RELATED WORK 
A. Record linkage: Making maximum use of the discriminating power of identifying  Information  
Special difficulties are encountered in devising reliable systems for searching and updating any large files of documents that must be 
identified primarily on the basis of names and other personal particulars. The underlying problem is that of making nearly maximum 
use of items of identifying information that are individually unreliable but that may collectively be of considerable discriminating 
power [8]. Rules that can be applied generally to name retrieval systems have been developed in a methodological study of the 
linkage of vital and health records into family groupings for demographic research purposes. These rules are described, and the 
ways in which information utilization for matching may be optimized are discussed. 
 
B. Parallel sorted neighbourhood blocking with MapReduce 
It enables the efficient parallel execution of data-intensive tasks such as entity resolution on large datasets. We investigate 
challenges and possible solutions of using the MapReduce programming model for parallel entity resolution. In particular, we 
extract and evaluate two MapReduce-based implementations for Sorted Neighborhood blocking that either use multiple MapReduce 
jobs or apply tailored data replication [9]. 
 

III. PROPOSED MODEL 
A. Data partitioning    
In this Module, we partition the large record into different random cluster in order to achieve the reduced time taken for the data 
processing and early detection of the duplicates inside the cluster. Sampling Method with the threshold limit (size) is specified in 
accessing the data with the data type from the database. 
 

1) Progressive sorted neighbourhood method: PSNM sorts the input data using a predefined sorting key and only compares 
records that are within a window of records in the sorted order. The intuition is that records that are close in the sorted order are 
more likely to be duplicates than records that are far apart, because they are already similar with respect to their sorting key. 
More specifically, the distance of two records in their sort ranks (rank-distance) gives PSNM an estimate of their matching 
likelihood. The PSNM algorithm uses this intuition to iteratively vary the window size [10], starting with a small window of 
size two that quickly finds the most promising records. The PSNM algorithm differs by dynamically changing the execution 
order of the comparisons based on intermediate results (Look-Ahead). Furthermore, PSNM integrates a progressive sorting 
phase (Magpie Sort) and can progressively process significantly larger datasets.  

 
Algorithm  
Parameters considered in the Analysing multiple representation for data  
a) Reference Key D is a reference to the data, which has not been loaded from disk yet. 
b) The sorting key K defines the attribute or attributes combination that should be used in the sorting step.  
c) Window key W specifies the maximum window size, when using early termination, this parameter can be set to an 

optimistically high default value.  
d) Key I define the enlargement interval for the progressive iterations. 
e) Partitioning Condition  
f) The number of necessary partitions pNum, while considering a partition overlap records to slide the window across their 

boundaries.  
g) Record should be ordered based on the sorting key using progressive Sorting function. 
            
B. Duplicates Detection using Iterative Parallel sorted neighbourhood method 
Duplicates are detected based on the window size by gradually increasing to estimate the close neighbours and less far way 
neighbours later on  For each of these progressive iterations[11], PSNM reads the entire dataset  once. Since the load process is done 
partition-wise, PSNM sequentially iterates and loads all partitions.  
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Figure 1. Architecture Diagram of the proposed model 

To process a loaded partition, PSNM first iterates overall record rank-distances dist that are within the current window interval , 
PSNM then iterates all records in the current partition to compare them to their dist-neighbor. The comparison is executed using the 
compare (pair) function. 
 
C. progressive blocking 
Blocking algorithms assign each record to a fixed group of similar records (the blocks) and then compare all pairs of records within 
these groups. Progressive blocking is a novel approach that builds upon an equidistant blocking technique and the successive 
enlargement of blocks. Like PSNM, it also pre-sorts the records to use their rank-distance in this sorting for similarity estimation. 
Based on the sorting, PB first creates and then progressively extends a fine-grained blocking. These block extensions are 
specifically executed on neighbourhoods around already identified duplicates, which enables PB to expose clusters earlier than 
PSNM. 
Block Comparison matrix is created to sort the records that form a similarity index is considered to be duplicate. In case of ties, the 
algorithm prefers block pairs with a smaller rank-distance[12], because the distance in the sort rank still defines the expected 
similarity of the records. The extensions continue until all blocks have been compared or a distance threshold for all remaining 
block pairs has been reached. 
We modelled a priority queue to frequently read the top elements from this list to estimate the density of duplicate items which 
exceeds the maximum block range.  The identified duplicate later rank the duplicate density of this block pair with the density in 
other block pairs. Thereby, the amount of duplicates is normalized by the number of comparisons, because the last block is usually 
smaller than all other blocks.  If the PB algorithm is not terminated prematurely, it automatically finishes when the list of similar 
Pairs is empty,  
 
D. Blocking Techniques 
A block pair consisting of two small blocks defines only few comparisons. Using such small blocks, the PB algorithm carefully 
selects the most promising comparisons and avoids many less promising comparisons from a wider neighbourhood[13]. However, 
block pairs based on small blocks cannot characterize the duplicate density in their neighbourhood well, because they represent a 
too small sample. A block pair consisting of large blocks, in contrast, may define too many, less promising comparisons, but 
produce better samples for the extension step. The block size parameter S, therefore, trades off the execution of non-promising 
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comparisons and the extension quality.  
 

1) Attribute Concurrency: The best sorting or blocking key for a duplicate detection algorithm is generally unknown or hard to 
find. Most duplicate detection frameworks tackle this key selection problem by applying the multi-pass execution method. This 
method executes the duplicate detection algorithm multiple times using different keys in each pass. However, the execution 
order among the different keys is arbitrary[14]. Therefore, favouring good keys over poorer keys already increases the 
progressiveness of the multi-pass method. In this section, we present two multi-pass algorithms that dynamically interleave the 
different passes based on intermediate results to execute promising iterations earlier. The first algorithm is the attribute 
concurrent Iterative PSNM (AC-IPSNM), which is the progressive implementation of the multi-pass method for the IPSNM 
algorithm, and the second algorithm is the attribute concurrent PB (AC-PB), which is the corresponding implementation for the 
PB algorithm 

IV. EXPERIMENTAL RESULTS 
A. Dataset Collection and Data Parsing  
The DBLP dataset is used in this work. The DBLP-dataset2 is a bibliographic index on computer science journals and proceedings 
which is represented as XML File. Data parsing is applied for breaking them up into parts of data (for example, the nouns (objects), 
verbs (methods), and their attributes or options) which can then be managed into features and clusters. 
 
B. Performance Evaluation  
The proposed algorithms increase the efficiency of duplicate detection for any size of records in dataset with limited execution time; 

 
Figure 2- Performance Evaluation on Execution Time of the Progressive Duplicate Detection Methods 

The system is capable for dynamic change and the ranking of duplicates estimated using the accuracy parameters such as precision, 
recall and f-measure with the existing solution treated as progressive sorted neighbourhood method. The comparison based on 
intermediate results to execute different passes of any order.  

 
Figure 3- Performance Evaluation on accuracy parameter of the Progressive duplicate Detection Methods 

Using this measure, experiments showed that proposed iterative approaches outperform the traditional SNM by up to 100 percent 
and related work by up to 30 percent.  
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Table 1: Performance Evaluation of progressive duplicate detection algorithms 
Technique  Execution 

Time  
Precision  Recall F- 

Measure  
Duplicates 
detected   

Progressive Sorted 
neighbourhood method  

100ms 
per 
dataset 

90 45 85 120 Records 
per milli 
seconds 

Iterative parallel 
Sorted Neighbourhood 
Method  

140ms 
per 
dataset  

95 43 91  

 
For the construction of a fully progressive duplicate detection workflow, we proposed an Iterative parallel Sorted neighbourhood 
method and results is depicted  
in the figure 2 and table 1.  
The adaptations AC-Iterative PSNM and AC-PB use multiple sort keys concurrently to interleave their progressive iterations. By 
analyzing intermediate results, both approaches dynamically rank the different sort keys at runtime, drastically easing the key 
selection problem.  
 

V. CONCLUSION 
Iterative Parallel sorted neighbourhood method and progressive blocking has been designed and implemented. Both algorithms 
increase the efficiency of duplicate detection for situations with limited execution time and high accuracy. They dynamically change 
the ranking of comparison candidates based on intermediate results to execute promising comparisons first and less promising 
comparisons later. To determine the performance gain of our algorithms, we proposed a novel quality measure for progressiveness 
that integrates seamlessly with existing measures. Using this measure, experiments showed that our approaches outperform the 
traditional SNM by up to 100 percent and related work by up to 30 percent. For the construction of a fully progressive duplicate 
detection workflow, we proposed a progressive sorting method, Magpie, a progressive multi-pass execution model, Attribute 
Concurrency, and an incremental transitive closure algorithm. The adaptations AC-Iterative PSNM and AC-PB use multiple sort 
keys concurrently to interleave their progressive iterations. By analyzing intermediate results, both approaches dynamically rank the 
different sort keys at runtime, drastically easing the key selection problem.  
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