Design, Modification and Analysis of Shaft of Concrete Mixer Machine

Amruta K. Wankhede1, Dr. A. R. Sahu2, Prof. U. D. Gulhane3

1M. Tech CAD/CAM, B. D. C. E. Sevagram
2Coordinator of M. Tech CAD/CAM, Dept. of Mechanical Engineering, B.D.C.E Sevagram
3HOD, Department of Mechanical Engineering, B.D.C.E Sevagram

Abstract-
In this project Design, Modification and Analysis of shaft of concrete mixer machine has done. Shaft is an important equipment of concrete mixer machine use for concrete mixture preparation and for support a revolving drum. The main objective of this analysis is to optimize the design of concrete mixer machine. The existing shaft of concrete mixer machine gets failed after approximately 150 Hr of uses.

To analyse this shaft using FEM, firstly a proper CAD model is developed using Pro/E cad software. Then by using ANSYS software FEM analysis is done to determine the different types of stresses and deflection developed. After carried out the analysis it has been found out that the existing design of shaft of concrete mixer machine is not proper and thereby I had suggested to change the material of the shaft for efficient working and to withstand the different static and dynamic load.

Key words: shaft design, computer aided design, mixer.

I. INTRODUCTION

A concrete mixer machine is also commonly called a cement mixer, is a device that homogeneously combines cement, aggregate such as sand or gravel, and water to form concrete.

Different styles of stationary mixers have been developed each with its own inherent strengths targeting different parts of the concrete production market. A typical concrete mixer uses a revolving drum to mix the components. Today's market increasingly requires consistent homogeneity and short mixing times for the industrial production of ready-mix concrete, and more so for precast concrete. This has resulted in refinement of mixing technologies for concrete production.

To supply continuously the ready mix its necessary that the concrete mixer should be in good condition of working, but it has been observed that the shaft of mixer get failed after some uses of time.

To determine a reasonable structure and technical parameter of continuous mixers is an urgent task. So in this project I am trying to identify the different causes of shaft failure.

It was found that spun pipe manufacturing industry or industry related to manufacturing of cement or concrete product only concentrated on the geometrical properties of reinforced concrete. The geometric property of reinforced concrete is depends upon the proper ratio of input materials and also proper functioning of mixer machine.

It is observed that the shaft of mixer machine bends or it get fractured due to overloading of input mixer. This results into low quality of concrete mixture.

Mixing is a complicated process that is affected by the type of mixer, the mixing cycle as defined by the duration, the loading method, and the energy of mixing.

For most machine shafts, however, analysis should be relatively straightforward. That’s because the failure typically provides strong clues to the type and magnitude of forces on the shaft and the direction they acted in, the failed parts will tell exactly what happened.

In this project FEM analyse of concrete mixer shaft has done. Shaft is an important equipment use for concrete mixture preparation.

It has been observed that the existing concrete mixer shaft of Wainganga spun pipe industry get failed at after some uses of time. So it is very tedious job for the workers to work with bend or braked shaft it may dangerous to worker and complicated to overcome the failures. Also it consumes lot of time and loss of productivity.

II. DESIGN AND SPECIFICATION

Mixer has following main components:
As there is the problem with the shaft of concrete mixer shaft. Therefor only the designing of existing shaft is check.

III. SPECIFICATION OF SHAFT

A. Material of shaft: Mild steel 1030
B. Length of shaft: 630mm
C. Pedestal dia: 72mm
D. Dia of shaft: 44mm
E. Outer dia of thread: 37mm
F. Inner dia of thread: 33mm
G. Chamfer length: 155mm
H. Bottom grease hole dia: 20mm
I. Grease hole length: 360mm

IV. SPECIFICATION FOR ASSEMBLY DRAWING

Thickness of drum=3mm
Upper rod thickness=16mm
Upper dia of drum=500mm
Middle dia=900mm
Bottom dia=600mm
Overall height=1000mm
Inner distance =970mm
Outer distance =1150mm
Width=100mm
Electric motor 3HP
Rpm of hopper or drum=25
Pulley dia=555mm
V. FORCE CALCULATION

To calculate the different type of forces acting on shaft of concrete mixer machine, I had developed free body diagram of concrete mixer machine.

A. Calculation of Force of Impact

As the mixture impacts on front end of shaft, thus I calculated the impact force acted on shaft due to the mixture. But it is observed that only 30% of total mixture is impacted on front end of shaft with reference to company owner and information available on websites. Thus, calculating impact force for 30% of mixture.

Mixture proportions:
- Cement – 140kg
- Sand – 80kg
- Water – 30kg
- Aggregates – 50kg

Thus, Total mixture mass is 300kg

Thus calculating impact force for 90 kg of mass that is for 90*9.81= 882.9N

\[(W/Y\text{max}) = \frac{384EI}{5L^3}\]
\[(W/Y\text{max}) = K = \frac{\pi}{64} \times 44^4 = 183.58 \times 10^3 = 384 \times 204 \times 10^3 \times 183.93 \times 10^5 \times 620^3 = 12.09 \times 10^3 \text{ N/mm}\]

Impact force = \((2\times K \times W \times H)^{1/2}\)
\[= (2\times 12.09 \times 10^3 \times 882.9 \times 300)^{1/2}\]
\[= 80.03 \text{ KN}\]
B. **For UDL Weight Calculation**

On shaft of concrete mixer different types of loads are acting

1) Because of drum self-weight
2) Because of mixture weight

 a) **Drum self-weight**

 \[F_1 = m \times g \]

 \[= 30 \times 9.81 \]

 \[= 294.3 \text{ N} \]

 b) **Mixture weight**

 \[F_2 = m \times g \]

 \[= 300 \times 9.81 \]

 \[= 2943 \text{ N} \]

 c) **Drum mean dia.**

 \[= \frac{500 + 900 + 600}{3} \]

 \[= 666.67 \text{ mm} \]

 d) **UDL weight**

 \[= \frac{F_1 + F_2}{\text{Mean dia of drum}} \]

 \[= \frac{294.3 + 2943}{666.67} \]

 \[= 4.86 \text{ N/mm} \]

 e) **Rate of UDL acted on circumference of shaft per mm**

 \[= \frac{\text{Shaft dia.} \times \text{UDL weight}}{666.67} \]

 \[= 4.86 \times 4.86 \]

 \[= 0.241 \text{ KN/mm} \]

VI. TORQUE ON SHAFT EXERTED BY ELECTRIC MOTOR

\[T = \frac{60P}{2\pi N} \]

\[= \frac{60 \times 2238}{2 \pi \times 25} \]

\[= 854.85 \text{ N-m} \]

\[= 854.85 \times 10^3 \text{ N-mm} \]

A. **Stresses in shaft**

1) **Shear stress due to transmission of torque**

\[\tau = \frac{16 \times T \times d^3}{\pi d^4} \]

\[= \frac{16 \times 854.85 \times 10^3 \times 44^3}{\pi \times 44^4} \]

\[= 51.109 \text{ N/mm}^2 \]

B. **For bending stress calculation**

![Figure 4: load diagram of shaft](image)

C. **By slope deflection method**

1) **Fixed end moment**

- **Span BC**

\[M'BC = -WL^2/12 \]

\[= -0.214 \times 370^2/12 \]
International Journal for Research in Applied Science & Engineering Technology (IJRASET)

\[M'_{CB} = \frac{WL^2}{12} \]
\[= 0.214 \times 370^2 / 12 \]
\[= 2.44 \times 10^3 \text{ KN/mm} \]

Span CD

\[M'_{CD} = \frac{-Wab^2}{l^2} \]
\[= -(0.49 \times 150 \times 70^2 / 220^2) \]
\[= -7.44 \text{ KN-mm} \]
\[M'_{DC} = \frac{Wab^2}{l^2} \]
\[= (0.49 \times 150^2 \times 70 / 220^2) \]
\[= 15.94 \text{ KN-mm} \]

2) **Slope deflection equations**

a) \[MBC = \frac{2EI}{L} (2 \theta_B + 0\theta_C) + M'_{BC} \]
\[= 2EI/370 (2 \theta_B + 0\theta_C) - 2.44 \times 10^3 \] …………1

b) \[MCB = \frac{2EI}{L} (0\theta_B + 20\theta_C) + M'_{CB} \]
\[= 2EI/370 (0\theta_B + 20\theta_C) + 2.44 \times 10^3 \] …………2

c) \[MCD = \frac{2EI}{L} (20\theta_C + 0D) + M'_{CD} \] …………(\theta_d=0)
\[= 2EI/220 (20\theta_C) - 7.44 \] …………3

d) \[MDC = \frac{2EI}{L} (0\theta_C) + M'_{DC} \]
\[= 2EI/220 (0\theta_C) + 15.94 \] …………4

3) **Equilibrium equation**

At ‘B’

\[MBA = -Wl^2/2 - Wl \]
\[= -0.214 \times 30^2 / 2 - 80.03 \times 30 \]
\[= -2.497 \times 10^3 \text{ KN-mm} \]
\[MBA + MBC = 0 \]
\[-2.497 \times 10^3 + 2EI/370 (20\theta_B + 0\theta_C) - 2.44 \times 10^3 = 0 \]
\[4EI\theta_B/370 + 2EI\theta_C/370 = 4.94 \times 10^3 \] …………(A)

At ‘C’

\[MCB + MCD = 0 \]
\[2EI/370 (0\theta_B + 20\theta_C) + 2.44 \times 10^3 + 2EI/220 (20\theta_C) - 7.44 = 0 \]
\[2EI\theta_B/370 + 4EI\theta_C/370 + 4EI\theta_C/220 = -2.43 \times 10^3 \]
\[2EI\theta_B/370 + 2360/81400 EI\theta_C = -2.43 \times 10^3 \] …………(B)

By solving equation (A) and (B)

We get,
\[\theta_B = 550141.59 / EI \text{ rad} \]
\[\theta_C = -186383.18 / EI \text{ rad} \]

4) **Final fixed end moments**

\[MBA = -2.497 \times 10^3 \text{ KN-mm} \]
\[MBC = 2.5 \times 10^3 \text{ KN-mm} \]
\[MCB = 3.398 \times 10^3 \text{ KN-mm} \]
\[MCD = -3.396 \times 10^3 \text{ KN-mm} \]
\[MDC = -1.678 \times 10^3 \text{ KN-mm} \]

\[\text{MAXIMUM MOMENT} = 3.398 \times 10^3 \text{ KN-mm} \]

5) **Reactions on shaft**
Span ABC:
\[\varepsilon \ McF=0 \]
\[-80.03 \times 400 - 0.24 \times 400^2 + RB \times 370 - 2.5 \times 10^3 + 3.39 \times 10^3 = 0 \]
\[RB = 130.38 \text{ KN} \]
Span CD:
\[\varepsilon \ McF=0 \]
\[3.39 \times 10^4 + 0.49 \times 150 + 1.678 \times 10^3 - RD \times 220 = 0 \]
\[RD = 23.73 \text{ KN} \]
\[\varepsilon \ Fy=0 \]
\[RB + RC + RD = 80.03 + 0.214 \times 400 + 0.29 + 0.49 \]
\[130.38 + RC + 23.37 = 166.41 \]
\[RC = 12.66 \text{ KN} \]

![Figure 5: S.F.D. and B.M.D.](image)

D. **Shaft subjected to bending moment**

\[M/I = \frac{\sigma b}{Y} \]

Where:
- \(M \) = Bending moment
- \(I \) = Moment of inertia & cross-section area of shaft
- \(\sigma \) = Bending stress
- \(Y \) = Distance from neutral axis to outer most shaft

\[I = \frac{\pi}{64}d^4 \]

\[Y = \frac{d}{2} \]

\[M = 3.398 \times 10^3 \text{ KN-mm} \]

\[I = \frac{\pi}{64} \times 44^4 \]

\[= 183.58 \times 10^3 \]

\[Y = 22 \]

\[\sigma b = 406.33 \text{ N/mm}^2 \]

E. **Maximum shear stress**

\[\tau_{\text{max}} = 16\pi d^3((M+Td^2)/2) / (16\pi d^4 + (3.98 \times 10^6)^2 + (854.85 \times 10^3)^2) / 2 \]

\[\tau_{\text{max}} = 209.49 \text{ N/mm}^2 \]

\[\tau_{\text{allowable}} = \frac{\text{yield strength of material}}{\text{safety factor}} \]
F. Von mises stress (according to distortion energy theory)
\[\sigma_{eq} = \left(\sigma^2 + 3\varepsilon^2 \right)^{\frac{1}{2}} \]
\[= \left(406.33^2 + 3 \times 51.109^2 \right)^{\frac{1}{2}} \]
\[= 894.05 \text{N/mm}^2 \]
\[\sigma_{eq \text{ allowable}} = \frac{\text{ultimate tensile strength}}{\text{safety factor}} \]
\[= \frac{527}{2} \]
\[= 263.5 \text{N/mm}^2 \]
\[\sigma_{eq \text{ allowable}} (263.5 \text{MPa}) < \sigma_{eq} (894.05 \text{MPa}) \]
Thus, shaft get failed.

VII. FATIGUE ANALYSIS OF SHAFT BY ANALYTICAL APPROACH
Fatigue analysis is carried out to found out the endurance strength of shaft and factor of safety of shaft.

We know,
Max bending moment and min bending moment are:
\((Mb)_{\text{max}} = 3.398 \times 10^6 \text{N-mm} \)
\((Mb)_{\text{min}} = 2.5 \times 10^6 \text{N-mm} \)
To find mean and alternating stress;
\[(Mb)_{\text{mean}} = \frac{1}{2} (Mb)_{\text{max}} + (Mb)_{\text{min}} \]
\[= \frac{1}{2} 3.398 \times 10^6 + 2.5 \times 10^6 \]
\[= 2.95 \times 10^6 \text{N-mm} \]
\[(Mb)_{\text{alt}} = \frac{1}{2} (Mb)_{\text{max}} - (Mb)_{\text{min}} \]
\[= \frac{1}{2} 3.398 \times 10^6 - 2.5 \times 10^6 \]
\[= 0.45 \times 10^6 \text{N-mm} \]
Thus, mean and alternating bending stress are:
\[(\sigma x)_{\text{mean}} = 32 (Mb)_{\text{mean}}/\pi d^3 \]
\[= 32 \times 2.95 \times 10^6 / \pi (44)^3 \]
\[= 352.75 \text{N/mm}^2 \]
\[(\sigma x)_{\text{alt}} = 32 (Mb)_{\text{alt}}/\pi d^3 \]
\[= 32 \times 0.45 \times 10^6 / \pi (44)^3 \]
\[= 53.81 \text{N/mm}^2 \]
We have, Max torque:
\(T_{\text{max}} = 854.85 \times 10^3 \text{N-mm} \)
For \(T_{\text{min}} \) I measured a current required to rotate a empty mixer:
\[\text{Power} = \text{current} \times \text{voltage} \times \cos \phi \]
\[= 5 \text{amp} \times 440 \text{v} \times 0.8 \]
\[= 1760 \text{w} \]
\(T_{\text{min}} = 672.27 \times 10^3 \text{N-mm} \)
Thus, mean and alternating torque are:
\[(T)_{\text{mean}} = \frac{1}{2} (T_{\text{max}} + T_{\text{min}}) \]
\[= 763.56 \times 10^3 \text{N-mm} \]
\[(T)_{\text{alt}} = \frac{1}{2} (T_{\text{max}} - T_{\text{min}}) \]
\[= 91.29 \text{N-mm} \]
Thus, mean and alternating shear stress are:
\[\tau_{\text{mean}} = 16 \times (T)_{\text{mean}} / \pi d^3 \]
\[= 16 \times 763.56 \times 10^3 / \pi (44)^3 \]
\[\tau_{\text{alt}} = 16 \cdot T_{\alpha} / \pi d^3\]
\[= 16 \cdot 91.29 \cdot 10^3 / \pi \cdot 44^3\]
\[= 5.45 \text{ N/mm}^2\]

A. Fatigue stress concentration factor for bending
\[K_f = (K - 1) \cdot q + 1\]
\[= (2.28 - 1) \cdot 0.22 + 1\]
\[= 1.282\]

B. Fatigue stress concentration factor for torsion
\[K_{fs} = (K_{s} - 1) \cdot q + 1\]
\[= (1.82 - 1) \cdot 0.22 + 1\]
\[= 1.180\]

Where,
\[K = \text{stress concentration factor for bending}\]
\[K_s = \text{stress concentration factor for torsion}\]
\[q = \text{Notch sensitivity factor}\]
For \(D/d=1.6 \& r/d = 0.045\)

C. Thus, equivalent or von mises stresses calculation
\[\sigma_m = \sqrt{\left(\sigma_{x1} \cdot k_f\right)^2 + 3 \left(\tau_{x1} \cdot k_{fs}\right)^2}\]
\[= \sqrt{(352.75 \cdot 1.282)^2 + 3 \cdot (45.65 \cdot 1.180)^2}\]
\[= 461.75 \text{ N/mm}^2\]
\[\sigma_a = \sqrt{\left(\sigma_{x2} \cdot k_f\right)^2 + 3 \left(\tau_{x2} \cdot k_{fs}\right)^2}\]
\[= \sqrt{(53.81 \cdot 1.282)^2 + 3 \cdot (5.45 \cdot 1.180)^2}\]
\[= 69.88 \text{ N/mm}^2\]

Stress at mean condition is max thus, consider
\[\sigma_m = \sigma_{eq} = 461.75 \text{ N/mm}^2\]
\[\tan \theta = \sigma_a / \sigma_m \text{ & also } \tan \theta = S_a / S_m\]
\[= 0.80 \quad \text{..(A)}\]

D. Endurance strength
To find endurance strength ‘\(S_e\)’
\[S_e = A \cdot K_{\text{size}} \cdot K_{\text{surface finish}} \cdot K_{\text{temp}} \cdot K_{\text{reliability}} \cdot S_e’ / k_f\]
But \(S_e’ = 0.5 \cdot \text{sut}\)
\[= 0.5 \cdot 527\]
\[= 263.5 \text{ N/mm}^2\]
\[A = 1 \quad \text{(for bending)}\]
\[A = \text{load factor}\]
\[K_{\text{size}} = 1 - (d - 12.5/75 - 12.5 \cdot 1 - K_{z'}) - (K_{z'} = 0.84 \text{ for M.S.})\]
\[= 0.92\]
\[K_{surf} = 0.92 \quad \text{(for ground finish)}\]
\[K_{reli} = 90\% = 0.897\]
Assume \(K_{temp} = 1\)
\[K_f = 1.282\]
\[S_e = 127.22 \text{ N/mm}^2\]
E. Goodman’s equation
\[\frac{S_a}{S_e} + \frac{S_m}{S_yt} = 1 \]
\[0.8 \times \frac{S_m}{127.22} + \frac{S_m}{296} = 1 \]
By solving we get,
\[S_m = 103.45 \text{ N/mm}^2 \]
\[S_a = 82.76 \text{ N/mm}^2 \]
Where:
- \(S_a \) = amp. Normal stress
- \(S_m \) = mean normal stress
- \(S_yt \) = yield tensile strength
- F.O.S = \(\frac{S_a}{\sigma} \)
 \[= \frac{82.76}{69.88} \]
 \[= 1.18 \]

VIII. FINITE ELEMENT METHOD

Finite Element Method is the micro mechanical analysis which is now days used as a powerful and an efficient tool for understanding the stress strain behavior of the structure. The basic idea in the Finite Element Method is to find the solution of complicated problem replacing it by the number of smaller regions. Thus, the solution of each region is considered as built up of many small interconnected sub regions called Finite Elements.

Figure 6. 3D model of shaft

A. Moment applied on the shaft

Figure shows the moment which is applied on the shaft.
B. Force applied on the shaft

![Force applied on the shaft](image)

Fig:8. Force applied on the shaft

C. Equivalent stress results

![Equivalent stress results](image)

Figure 9 Equivalent stress

Equivalent stress of shaft is 315.31 MPa which is greater than allowable stress of 263.5 MPa.

D. Maximum shear stress results

![Maximum shear stress results](image)

Figure 10 Maximum shear stress

Max. shear stress of shaft is 182.5 MPa which is greater than allowable stress of 148 MPa
E. Life cycle results

Figure 11: Life cycle of shaft

F. Safety factor results

Safety factor of shaft is 0.856 which is less than 1. Thus, design is failure.

SOLUTION 1:

Table 1 Comparison of Allowable stresses and Ansys result:

<table>
<thead>
<tr>
<th>STRESSES</th>
<th>ANSYS RESULTS</th>
<th>ALLOWABLE STRESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent stress</td>
<td>315.31 MPa</td>
<td>263.5 MPa</td>
</tr>
<tr>
<td>Max. shear stress</td>
<td>182.05 MPa</td>
<td>148 MPa</td>
</tr>
</tbody>
</table>

1) It has been observed from above table 22 which is obtained by FEM analysis of shaft of concrete mixer machine that maximum shear stress and equivalent stress both are greater than allowable shear and equivalent stresses of existing shaft material.
2) Thus, failure occurs in the shaft of concrete mixer machine.
3) Thus, its need to change the parameter of shaft it may be either dimensions or by changing the material of shaft.
4) Due to the design limitations set by manufacturer of concrete mixer machine, I made a modification of shaft by changing the material of shaft.

IX. MODIFIED DESIGN

Redesign of shaft by using different material:

• SAE 4140 (Chromium Molybdenum Steel)
• SAE 4140 alloy Steel is chromium, molybdenum alloy steel. It has high fatigue strength, abrasion and impact resistance, toughness.
and torsion strength etc. It is used extensively in most industry sectors for a wide range of application such as axle shaft, bolts, crankshaft and part lathe, spindle, motor shaft, nut, pinions, pump shaft, worm, etc.

- Ultimate Strength (Sut) = 815 MPa
- Yield Strength (Sy) = 680 MPa

A. Equivalent stress

![Equivalent stress](image1)

Figure: 11. Equivalent stress developed on modified shaft

Equivalent stress developed on shaft is 315.06 which is less than Allowable stress of material of modified shaft.

B. Maximum Shear stress

![Maximum Shear stress](image2)

Figure: 12. Maximum Shear stress developed on modified shaft

Maximum shear stress developed on shaft 181.9 is less than Allowable shear stress of material of modified shaft.
C. Life cycle

![Life cycle of modified shaft](image1)

Figure: 13. Life cycle of modified shaft

D. Safety Factor:

![Safety Factor of modified shaft](image2)

Figure: 14. Safety Factor of modified shaft

Safety factor of modified shaft is 1.2696 which is greater than 1. Hence it is conclude that modified shaft design is safe.

X. RESULT AND DISCUSSION

As decided in the objectives all the components of concrete mixer machine were modeled as per specified dimension by using Pro/E software and then assembled.

After that FEM analysis of shaft was carried out with the help of Ansys software and different stress and deformation were calculated. And following solution has been obtained

<table>
<thead>
<tr>
<th>STRESSES</th>
<th>ANSYS RESULTS</th>
<th>ALLOWABLE STRESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent stress</td>
<td>315.31 MPa</td>
<td>263.5 MPa</td>
</tr>
<tr>
<td>Max. shear stress</td>
<td>182.05 MPa</td>
<td>148 MPa</td>
</tr>
<tr>
<td>F.O.S=0.856</td>
<td></td>
<td>F.O.S>= 1</td>
</tr>
</tbody>
</table>

It has been observed from above table no. 25 which is obtained by analytical approach and FEM analysis of shaft of concrete mixer machine that maximum shear stress and equivalent stress both are greater than allowable shear and equivalent stresses of existing shaft material. Thus, failure occurs in the shaft of concrete mixer machine.

Therefore, shaft is redesigned by changing material of existing shaft.

After doing the FEM analysis on modified shaft I got the following results;
Table 3 Comparison of existing shaft and modified shaft and Result from Ansys:

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>SAE 1030</th>
<th>SAE 4140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's modulus MPa</td>
<td>204</td>
<td>206</td>
</tr>
<tr>
<td>Poisons ratio</td>
<td>0.3</td>
<td>0.33</td>
</tr>
<tr>
<td>Density kg/m³³</td>
<td>7800</td>
<td>7700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Result from ansys</th>
<th>Allowable stress</th>
<th>Result from ansys</th>
<th>Allowable stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. shear stress MPa</td>
<td>182.05</td>
<td>148</td>
<td>181.9</td>
<td>340</td>
</tr>
<tr>
<td>Equivalent stress MPa</td>
<td>315.31</td>
<td>263.5</td>
<td>315.06</td>
<td>407.5</td>
</tr>
<tr>
<td>F.O.S</td>
<td>0.856</td>
<td>> 1</td>
<td>1.2696</td>
<td>> 1</td>
</tr>
</tbody>
</table>

Above Table No. 24 indicates that maximum shear stress developed on existing shaft is 182.05 MPa which is greater than a value of allowable shear stress of 148 MPa. Thus, shaft gets failed. Therefore, shaft is redesigned by changing shaft material to SAE 4140. As Table No.24 indicates allowable shear stress of modified shaft is181.9 MPa which is less than a value of allowable shear stress of modified shaft of 340 MPa. Hence this design is safe.

XI. CONCLUSION

The structural static analysis of concrete mixer machine shaft is carried out to find out the different failure in the shaft due to different loading condition. By conducting FEM analysis of existing design of the shaft it has observed that maximum shear stress and equivalent stress induced in the shaft is exceeding the allowable shear stress and equivalent stress. Therefore, shaft gets failed. So it is necessary to redesigned shaft.

The property of shaft can be improved either by changing its dimension or by changing material. But due to machine space constant it is not possible to increase the diameter of shaft. Therefore, the shaft is redesigned by taking new material and after conducting again the FEM analysis of shaft with change material. The maximum shear stress and equivalent stress are within limits or less than allowable limits. Therefore, design is safe. Life cycle of shaft and safety factor is also calculated by analytical method and later it is validated by using Ansys software.

XII. FUTURE SCOPE

A. In this project design of shaft is analyzed by changing the material.
B. In future the design of shaft can be analyzed by changing its diameter.
C. Design of different components of the mixer can also be optimized.
D. In this project, shaft is only analyzed by using static condition, it is possible to analyze shaft by using dynamic condition as the load continuously varying inside the drum.

REFERENCES
