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Abstract: In this paper, we discuss convergence performance issues of Compound Normal with Gamma Mixture(CNGM) and 
Truncated Compound Normal with Gamma Mixture(TCNGM) models that we have proposed in our earlier work in comparison 
to the normal mixture model(NM). We show that these models are feasible for mixture density estimation. Based on examination 
of coefficient of kurtosis, these models are shown to be preserving model characteristics of the more mesokurtic normal 
distribution and model better the leptokurtic deviations of normal distribution.  
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I. INTRODUCTION 
In this paper, we address the issue of solving the more general problem of data clustering using mixture models that arise from 
within probabilistic framework. The main objective here is to look at two mixture models, the genesis for them being the finite 
normal mixture model, that we have proposed in our earlier work[1],[2]. The major issue addressed in this paper is to study the 
convergence performance of the two models in comparison to  normal mixture model.  
Physical considerations of the random experiment at hand can sometimes persuade one to consider modeling the experiment with a 
mixture. The experimenter may know that the phenomena that he is observing are a mixture; for example, the radioactive particle 
emissions under observation might be a mixture of the emissions of two, or several, different types of radioactive materials [3]. 
This paper is organized as follows. In Section II, we present an introductory treatment of probabilistic framework in general and in 
particular the issues related to the distribution models that have been considered for examination in our work.  In Section III, we 
introduce the mixture density estimation problem, the maximum likelihood estimation approach, and the applications modeled as 
mixture density estimation problem.. In Section IV, we present the details  that we have worked out in [1],[2].In Section V, 
convergence performance issues are discussed using a comparative approach. Finally we place our concluding remarks in Section 
VI. 

II. PROBABILISTIC MODEL DRIVEN APPROACH 
In probability and statistics, a probability distribution assigns a probability to each outcome of a random experiment. Based on the 
type of the random variable being discrete or continuous, the corresponding distributions are specified by probability mass functions 
or probability density functions. A parametric family of density functions is a collection of density functions that is indexed by a 
quantity called a parameter [3]. A probability distribution can either be univariate or multivariate. A univariate distribution gives the 
probabilities of a single random variable taking on various alternative values; a multivariate distribution is a joint probability 
distribution that gives the probabilities of a set of two or more random variables(dimensions) taking on combinations of values [3]. 
In the following subsections, we briefly discuss the underlying concepts related to our work. 

A. Normal Distribution  
A great many of the techniques used in applied statistics are based upon the normal distribution. A random variable X is defined to 
be normally distributed in the continuous domain if its density is given by[4] 
푓 (푥) =  푓 (푥;  휇, 휎) =

√
푒 ( ) ⁄                                                                              (1) 

where the parameters 휇(푙표푐푎푡푖표푛 표푟 푚푒푎푛) 푎푛푑 휎(푠푡푎푛푑푎푟푑 푑푒푣푖푎푡푖표푛) satisfy −∞ < 휇 < ∞ and 휎 > 0. If random variable X is 
normally distributed with mean μ and variance 휎 , we will write 푋~푁(휇, 휎 ). When   푋~푁(0,1) , it is called a standard normal 
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distribution, and is mesokurtic in nature identified by a bell shaped curve as shown in Fig. 1 (green in color). Platykurtic and 
leptokurtic variations of the same are shown in blue and red curves. 
The above distribution has, as defined in [4], the following Pearson’s  훽  coefficients: 
Coefficient of skewness 

훽 =  = 0                                      (2) 

Coefficient of kurtosis 
훽 =  =  3                  (3) 

 
Figure 1 Normal Densities X ~ N(μ,σ2) 

B. Gamma Distribution 
A random variable X is defined to be following gamma distribution if its density is given by 
푓 (푥) =  푓 (푥;  푟, 휆) =

Γ( )
(휆푥) 푒                                   (4) 

where 0 ≤ 푥 < ∞, 푟 > 0,푎푛푑 휆 > 0 . Here, r and 휆 are known as shape and rate(inverse of scale) parameters respectively. Γ(. ) is  
the gamma function. If r = 1, gamma density specializes to exponential density [3]. Figure 2 shows different shapes of gamma 
curves for 휆 = 1. 

C. Compound Distributions  
As stated by S. C. Gupta and V. K. Kapoor in [4],  consider a random variable X, whose distribution depends on a single parameter 
θ which instead of being regarded as fixed constant, is also a random variable following a particular distribution. In this case, we say 
that the random variable X has a compound or composed distribution. 

 
Figure 2 Gamma Densities (λ = 1) 

D. Compound Normal With Gamma Distribution 

 As given in [5] by Normal L. Johnson et al, a compound normal with gamma distribution or 푁표푟푚푎푙(휇, 휎 ) Λ
휎 퐺푎푚푚푎(푐휒 ) is 

formed by ascribing a distribution to 휎   i.e., variance by considering it as a random variable and fitting a new distribution. The 
corresponding distribution is defined to have a density function given as 
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푓(푥) =   
 ⁄ ( ⁄  ,  ⁄ ) 1 + (  )

 

(  )⁄
                     (5) 

                
where µ, c, and v are location, scale, and shape parameters. In the following sections, we will observe that that the above distribution 
models better the leptokurtic deviations of normal distribution.  
The above distribution   has the following characteristics whose derivations are detailed in[1], [2]. 
푀푒푎푛 = 휇                                      (6)                                                                                        
Second central moment about mean,  휇  i.e., variance is  
 휇  =  푉푎푟푖푎푛푐푒 =   ( )      ,   푣 ≥ 3 푓표푟 푓푖푛푖푡푒 푣푎푟푖푎푛푐푒                          (7) 

Third central moment about mean, 휇  is 0, since all odd moments about mean are zero. 
Fourth central moment about mean, 휇  is 

휇 =  ( )( )                                                                                                                    (8)      

Pearson’s  훽  coefficients: 
Coefficient of skewness 

훽 =  = 0                                    (9) 

Coefficient of kurtosis 
훽 =  =  ( )

( )                                               (10)                                              

푣 > 4 for finite kurtosis. 
For different values  of  푣, this distribution has different shapes of frequency curves. As 푣 increases,  훽  tends to 3; thus, it includes 
mesokurtic distribution. 

E. Truncated Distributions  
In statistics, a truncated distribution is a conditional distribution that results from restricting the domain of some other probability 
distribution. Truncated distributions arise in practical statistics in cases where the ability to record, or even to know about, 
occurrences is limited to values which lie above or below a given threshold or within a specified range [3].  
In general, if X is a random variable with density 푓 (. ) and cumulative distribution 퐹 (. ), then the density of X truncated on the left 
at a and on the right at b is given by 

( )
( ) ( ) 

                                      (11) 

For image segmentation problem, since the intensity values for gray level images usually range between 0 and 255, it is reasonable 
to model the data as a truncated distribution.  

F. Truncated Compound Normal With Gamma Distribution 
 The  probability density function of Truncated Compound Normal with Gamma Mixture(TCNGM) distribution after choosing left 
and right truncating points as a and b is defined by Equation(11) where 

푓(푥) =  ⁄ (  , ⁄⁄ ) 1 + ( )  ( )

     as defined in Equation(5), is the density function defined for the compound normal with 

gamma distribution, 
퐹(푏) =  1 −   퐼  ,                             (12)  
                    
is  the cumulative distribution function for some x taking value b such that 푥 ≥ 휇, and 
퐹(푎) =    퐼  ,                        (13)   

is the cumulative distribution function for some x taking value a such that 푥 ≤ 휇 as derived in [2]. Here, 퐼  ,  and  퐼  ,  
are incomplete beta function ratios. This results in the the new density function for the truncated compound normal with gamma 
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distribution with a and b as left and right truncation point and is given as 

푓(푥) =    
⁄ (  , ⁄⁄ )  ,  ,

1 +  ( )  ( )

                                       (14)       

      
where    퐵  , 푎푛푑 퐵  ,   are incomplete beta functions. The 푓(푥) in Equation (14) is the new density function for the 
truncated compound normal with gamma distribution with a and b as left and right truncation points. 

G. Mixture Distribution 
A brief introduction as given by Mood et al in [3] to the concept of contagious distribution or a mixture is given here. If   
푓 (. ), 푓 (. ), … , 푓 (. ), …  is a sequence of density functions which are either all discrete density functions or all probability density 
functions which may or may not depend on parameters, and 푝 ,푝 , … , 푝 , …  is a sequence of parameters satisfying  푝 ≥ 0 and 
∑  푝 = 1∞ , then ∑  푝 푓∞ (푥) is a density function, which is sometimes called contagious distribution or a mixture. Figure 3 
shows an example mixture distribution. 

 
    Figure 3  An Example Mixture Distribution 

 
III. MIXTURE DENSITY ESTIMATION PROBLEM 

Mixture density estimation problem is concerned with identifying local component distributions within the perspective of the global 
data distribution where the global data comprises a mixture of component distributions. This problem is generally solved using 
maximum likelihood approach which is explained below. 

A. Maximum Likelihood Estimation  Approach   
In rough general terms, a maximum-likelihood estimate(MLE) of a parameter which determines a density function is a choice of the 
parameter which maximizes the induced density function (called in this context the  likelihood function) of a given sample of 
observations.  Maximum-likelihood estimation has been the approach to the mixture density estimation problem most widely 
considered in the literature since the use of high speed electronic computers became widespread in the 1960’s[6].  
The customary way of finding a maximum-likelihood estimate is first to determine a system of equations called the likelihood 
equations which are satisfied by the maximum-likelihood estimate, and then to attempt to find the maximum-likelihood estimate by 
solving these likelihood equations. For mixture density problems, the likelihood equations are almost certain to be nonlinear and 
beyond hope of solution by analytic means. Consequently, one must resort to seeking an approximate solution via some iterative 
procedure like Expectation Maximization framework. 

B. Maximum  Likelihood  Estimation  Via  Expectation Maximization 
EM algorithm, which was formalized by Dempster, Laird and Rubin [7],[8] is an iterative procedure for numerically approximating 
maximum likelihood estimates of the parameters in mixture densities in an incomplete data context. The EM iteration alternates 
between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the 
current estimate for the parameters, and  a  maximization (M) step, which computes parameters maximizing the expected log-



www.ijraset.com                                                                                                  Volume 4 Issue XII, December 2016 
IC Value: 13.98                                                                                                   ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved 
305 

likelihood found on the E step. Here, log-likelihood is considered since it is analytically simple form of the likelihood. These 
parameter-estimates are then used to determine the distribution of the latent variables in the next E step.  
The EM algorithm for the mixture density estimation problem has been studied by many authors over the past several decades. It 
has been found in most instances to have the advantages of reliable global convergence, low cost per iteration, economy of storage 
and ease of programming, as well as a certain heuristic appeal. All in all, it is undeniably of considerable current interest, and it 
seems likely to play an important role in the mixture density estimation problem for some time to come. 

C. Applications for Mixture Density Estimation Problem 
The more general problem of data clustering may be considered as mixture density estimation problem. Big data analysis and data 
mining tasks use clustering as a kind of unsupervised learning for pattern analysis and machine learning. Image analysis is one such 
application of which image segmentation is one which may be addressed as mixture density estimation problem. The current 
literature on statistical image segmentation techniques mostly assumes the data describing the image as a mixture of component 
distributions, as shown in Fig. 3 [9],[10],[11],[12]. Segmentation methods use similarity property to detect distinct objects, each of 
which having similar properties for attributes like intensity value, texture, and others in a given image.  In other words, the goal of 
image segmentation is to detect region homogeneity or similarity in the local neighborhood and extend this to the entire image based 
on   different methods like thresholding, region growing, probabilistic distribution models, and other approaches.   
  

IV. MAXIMUM LIKELIHOOD ESTIMATION USING CNGM AND TCNGM 
In this section, we present the analytical expressions derived as in [1],[2] and their use during the  construction of Expectation 
Maximization algorithm. 

A. Analytical Expressions for Model Parameters 
The probability density function of the CNGM model [8] is 
푝(푥|휃) =  ∑ 훼 푝 (푥|휃 )                                  (15)                      
where the parameters are  Θ =  (훼 , … ,훼  ,휃 , … , 휃 ) such that   훼 = 푃(휃 = 휃 ) with  0 < 훼 < 1  such that ∑ 훼 = 1. And 
each 푝  is probability density function parameterized by 휃  where  휃 =  (휇 , 푐 , 푣 ). In other words, we assume we have M 
component densities mixed together with M mixing coefficients or  weights  훼  . 
The probability density function 푝   , for a given component in compound normal with gamma mixture(CNGM) distribution , is 
defined, according to Equation (5), as 

푝 (푥 |휃 )  =   ⁄ ( ⁄  , ⁄ )
1 + ( ) ( )⁄

               (16) 

The analytical expressions for Θ =  (훼 , … ,훼  ,휃 , … , 휃 ) for the above model are given in[1],[2] 
The solution in respect of Θ for CNGM is given as 
 훼 =  ∑ 푝(푙|푥 , Θ )                                 (17) 

휇 =  ∑ | ,Θ                                               (18)                                                                                   

푐 =  ( )   ∑ (푥 −휇 ) 푝(푙|푥 , Θ )                             (19)                                                                        

푣 =
∑ | ,Θ

− 1                                  (20)         

The probability density function 푝   , for a given component in truncated compound normal with gamma mixture(TCNGM) 
distribution , is defined, according to Equations (11), (12), (13), and (16) as 

푝 (푥 |휃 ) =    ⁄ (  , ⁄⁄ )  ,  ,
1 +  ( )  

                      (21) 

The update equations for Θ  for TCNGM are, as given in [2] 
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휇 = ∑  | ,Θ
∑ | ,Θ

+

⁄

⎣
⎢
⎢
⎡

 

⎦
⎥
⎥
⎤

( )  ,  ,  ,
                     (22)                                   

푐 = ( )∑ ( ) | ,Θ
∑ | ,Θ

+  

⁄

⎣
⎢
⎢
⎡
( )  ( )

⎦
⎥
⎥
⎤

 ,  ,  ,
                                   (23)        푣 =

 
 ,  ,

 ,  ,

∑ | ,Θ

∑   | ,Θ
−  1                        (24)   

and    훼  is same as that in Equation(17).  
where x refers to each observation(individual pixel intensity value in the context of gray level images),  휇 , 푐 , and 푣  are, 
respectively, location, scale, and shape  parameters of lth component of the mixture and 퐵(1 2⁄ ,푣 2⁄ ) is the beta function. 

B. EM Algorithm For The Proposed Models 
In this subsection, we present the outline of EM algorithm [8] for the mixture model defined by   compound normal with gamma 
mixture or its truncated form. The basic steps here are 
Step1: Decide M, the number of segments based on the number of components of the mixture   i.e., fix  Θ =
 (훼 , … ,훼  ,휃 , … ,휃 ).  
Step2: Initialize  Θ.  
Step3: Invoke EM algorithm. 
EM Algorithm: /*Repeat E-step and M-step until convergence is reached*/ 
E-step: Compute the expectation as 

푝( )(푙|푥 , Θ ) =
( ) | ( )

∑ ( ) | ( )   (푞 = 0,1,2, … )   

where 
푝 (푥 |휃 )  is defined as in Equation(16) for CNGM and as in Equation (21) for TCNGM. 
M-step: Compute update equations for 
 Θ =  (훼 , … ,훼  ,휃 , … , 휃 ) using Equations (17),(18), (19), and (20) for CNGM and Equations (17),(22), (23), and (24) for 
TCNGM 
 
(푞 = 0,1,2, … )  

The stopping criterion is 
logℒ( ) − logℒ ( ) <  휖  

where ℒ is the likelihood of the parameter estimates, 휖 is error tolerance. In the above algorithm a and b, respectively, are set to 0 
and 255 for our image segmentation experiment, since these values are considered as left and right truncation points for our 
TCNGM [1],[2]. 

C. Implementation And Results 
We have implemented the EM algorithm [8],[13] for the CNGM and its  truncated version(TCNGM) in MATLAB and obtained 
fruitful segmentation results for those images as detailed in [1],[2].In our experiment, the initialization of the parameters for the 
specified number of clusters is done using K-means clustering. For those images considered for examination, we have obtained 
fruitful segmentation results as shown in Fig. 4 and their corresponding density plots in Figs. 5 through 13.  
The main objective behind the proposed CNGM model described in[1],[2] and the extended TCNGM model presented in[2] is to 
study their feasibility to solve mixture density estimation problem in the context of leptokurtic deviations of normal mixture 
distributions. We understand that image data distributions, where coefficient of kurtosis is more than 3, are well modeled as 
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compound normal with gamma mixture model.  
The additional objective behind the proposed TCNGM model [2] is to study its feasibility to solve mixture density estimation 
problem in the context of truncated data distributions. We understand that image data distributions are well modeled as truncated 
distributions since the pixel values fall within a finite range. 

 

 

 

 

 

 

 

 

 
Fig. 4 Original Images (Leftmost) and their Segments 

 

 
Fig 5 Snake Data: Mixture Density Plots Produced by TCNGM, NM and CNGM 

 
Fig 6 Sunset Data: Mixture Density Plots Produced by TCNGM, NM and CNGM  
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Fig 7 Fox Data: Mixture Density Plots Produced by TCNGM, NM and CNGM 

 
Fig 8 Eagle Data: Mixture Density Plots Produced by TCNGM, NM and CNGM 

 
Fig 9 Lady Data: Mixture Density Plots Produced by TCNGM, NM and CNGM 

 
Fig 10 Church Data: Mixture Density Plots Produced by TCNGM, NM and CNGM 

 
Fig 11 Man Data: Mixture Density Plots Produced by TCNGM, NM and CNGM 



www.ijraset.com                                                                                                  Volume 4 Issue XII, December 2016 
IC Value: 13.98                                                                                                   ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved 
309 

 
Fig 12 Crane Data: Mixture Density Plots Produced by TCNGM, NM and CNGM 

 
Fig 13 Horse Data: Mixture Density Plots Produced by TCNGM, NM and CNGM 

V. CONVERGENCE PERFORMANCE ANALYSIS 
In this section, convergence related issues for the models studied is presented  since the three mixture models-TCNGM,CNGM, and 
NM exhibit different model characteristics and model complexities. In Subsection A, we present  performance comparison for these 
models and in Subsection B, we present mean absolute difference in μ and σ  between the classification data for all components and 
their maximum likelihood estimates as produced by the respective EM algorithms. 

A. Convergence Performance Results 
Convergence performance results in terms of number of iterations, log-likelihood, and segmentation time taken by the EM algorithm 
[8],[13] for the proposed truncated version of the compound normal with gamma mixture also appear to be good with respect to the 
other mixture models. Tables 1 and 2 show these results and the respective bar charts are shown in Figures 14, 15, and 16. 

Table 1 Convergence Performance: No of Iterations and log-likelihood (TCNGM/CNGM/NM)  

Im ag e 
# Image No of Iterations Log ℒ 

TCNGM CNGM NM TCNGM CNGM NM 
1 Snake 26 26 4 -35023.6902 -

35023.6910 
-53241.4023 

2 Sunset 9 22 13 -37102.2624 -
36750.9212 

-161403.0664 

3 Fox 9 12 13 -36632.3612 -
37558.5359 

-14016587.1177 

4 Eagle 4 4 3 -44456.4675 -
44469.0734 

-307836.0188 

5 Lady 17 19 28 -50330.2265 -
50363.1760 

-658283.3970 

6 Church 3 18 38 -46073.7706 -
46147.2112 

-1154905.1520 

7 Man 22 4 47 -46812.1734 -
46724.3704 

-196462.0491 

8 Crane 9 5 21 -46840.0419 -
46972.5521 

-307678.8837 

9 Horse 3 3 47 -48815.3291 -
48854.6986 

-221163.1567 
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Table 2 Convergence Performance: Segmentation Time (TCNGM/CNGM/NM) 

Im
ag

e 
# 

Image 

 
Segmentation Time 

(Seconds) 
TCNGM CNGM NM 

1 Snake 866.3281 114.344 7.4063 
2 Sunset 531.3750 145.609 35.2188 
3 Fox 493.5469 79.5 34.4063 
4 Eagle 295.3438 37.4688 10.5313 
5 Lady 1300.641 166.063 99.6719 
6 Church 300.8594 189.375 160.141 
7 Man 2394.6094 58.3281 246.234 
8 Crane 1079.5313 79.1094 127.953 
9 Horse 450.7344 50.5781 283.969 

 

 
Fig 14 Convergence (No of Iterations) Plot for TCNGM/CNGM/NM 

 
Fig 15 Convergence (Log-Likelihood) Plot for TCNGM/CNGM/NM   
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Fig 16 Convergence (Segmentation Time) Plot for TCNGM/CNGM/NM   

The log-likelihood for TCNGM has been found to be very close to that of CNGM, since the genesis for the truncated version is the 
compound normal with gamma mixture, though there appears to  be some significant difference in number of iterations. In respect 
of segmentation time, EM algorithm for TCNGM that is run, along with those for the other mixture models,  on a PC with 
Pentium(R) 4 CPU 3.00 GHz, with 1GB RAM, has taken considerably more time than the others for all the images considered for 
experimentation. The reason for this, unlike CNGM,  might be due to the additional terms in the update equations that incurred 
substantial computational overheads.  Time complexity for running EM algorithm, in general, is said to be quadratic in nature [6], 
though it can be more in certain formulations. Since we have used segmentation time as an alternative specification, the run time 
complexity study is not addressed in this work. 

B. Mean Absolute Difference In μ And σ 
In this section, we present an additional study that  has been carried out in [2] to examine the deviations of the observed 
segmentation data from the corresponding maximum likelihood estimates for the parameters,  as computed by the compound normal 
with gamma mixture model, its truncated version, and the normal mixture model. Average absolute difference in mean (μ) and 
standard deviation (σ) between the said observed data and the corresponding  estimates are considered for this purpose. The mean 
absolute difference in μ and σ for the image data are defined below, which have been computed based on the given number of 
respective image segment distributions for each image data.  
푀퐴퐷 = ∑ 휇 − 휇                           (25) 

푀퐴퐷 = ∑ 휎 − 휎                           (26) 

In the Equations (25) and (26), 푀퐴퐷  and  푀퐴퐷  , respectively, stand for mean absolute difference in μ and σ. For each segment i ,   
ranging between 1 to K , 휇  and 휎  are mean and standard deviation observed and  휇  and 휎  are the corresponding maximum 
likelihood estimates. The maximum likelihood estimate for σ in respect of the compound normal with gamma distribution and its 
truncated version is computed using Equation (7), which defines the variance (휎 ) as a function of scale(c) and shape(v) parameters. 
The results obtained for 푀퐴퐷  and  푀퐴퐷  in respect of normal mixture, compound normal with gamma mixture and its truncated 
version are presented as  bar charts in Figs. 17 and 18. A keen observation at the figures suggest that all the three models are subject 
to deviations in one or the other measure across the images considered for examination. The reason for this might be due to the 
influence of overlapping densities across component distributions in the mixtures [1],[2]. This statement is supported by the 
respective density plots shown in Figures 5 through 13. 
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Fig 17 Mean Absolute Difference in μ: NM/CNGM/TCNGM 

 
Fig 18 Mean Absolute Difference in σ: NM/CNGM/TCNGM  

 
VI. CONCLUSIONS 

In this paper, the EM algorithm for the models studied in [1],[2] has been constructed and it is implemented using MATLAB. This 
has been applied to solve image segmentation problem as a mixture density estimation problem. Here, we have re run the 
implementation in [1] for normal, compound normal with gamma mixture model to check for consistency in the results between 
runs and used these results  to  compare  with  those obtained for the truncated version presented in [2] of the compound normal 
with gamma mixture model. Convergence performance of the EM algorithm for the proposed  model in terms of number of 
iterations, log-likelihood, and segmentation time in comparison with that for normal and compound normal with gamma  mixture 
models has been thoroughly examined. In addition to this, deviations of the observed segmentation data from the respective 
maximum likelihood estimates for the models in terms of average absolute difference in mean(μ) and standard deviation(σ) are 
reported. 
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