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Abstract: De laval nozzle is a convergent divergent type nozzle which has the ability to convert the chemical energy with high
pressure in to kinetic energy with high velocity and low pressure. In other words the device takes in minimal power and delivers
tremendous amounts of output power used in jet and rocket engines. The pressure and velocity distribution across the nozzle are
very important and they entirely depend on the cross section or the geometry. Reverse flow is caused in the negative pressure
gradient region and reverse flow Cavitation is very much useful in under water applications. The present study is focussed on
analysis of de laval nozzle geometries and reverse flow phenomenon. The nozzle is designed and analysed in Ansys fluent.
Pressure distribution and velocity values are noted down and these are compared with the theory of gas dynamics. The case of
reverse flow is also simulated and contours are drawn to the available geometry.
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L. INTRODUCTION
The de laval nozzle contains throat where the multiplication of velocity takes place due to the minimum flow area and inlet area and
exit area. The velocities attained by the jet engines are expressed in terms of Mach number and de laval nozzle should facilitate
minimum pressure drop and high velocity. The flow goes from subsonic (M- Mach number <1) to Sonic ( M=1) and then to the
supersonic ( M>1). The back pressure when lowered to a value equal to the pressure at the exit of the nozzle offers a uniform
super sonic flow. When the air enters the inlet the high pressure fluid expands over the chamber and reduce its pressure to the
pressure existing outside the nozzle . This is design consideration for the nozzles.

A. GOVERNING THEORY
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B. Cad modelling
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Fig 2. Cad modelling of nozzle

C. MESHING
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Fig 3 Meshing of C D nozzle
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Fig 4 Meshing attributes of the nozzle

D. PRE-PROCESING
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Fig 6 Mathematical modelling
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1. SIMULATION RESULTS

A. Convergence
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Fig 7 cd-1 Convergence plot
B. Velocity distribution
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Fig 8 Contours and vectors of Mach number - Velocity

The velocity is maximum with Mach no = 2.82 at the exit of the nozzle. The throat has a Mach — 0.98 approaching the sonic
flow and. This is also called as choking at the throat. The red color contour indicates the exit region velocity and the blue region
indicates the low velocity profile at the inlet.
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C. Pressure distribution
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Fig 9 Static pressure contour Fig 10 static pressure plot

The inlet pressure is 3 bar and outlet pressure is almost equal to the atmospheric pressure indicated by the blue contours that the
pressure is decreased drastically. The plot also indicates a fall in the pressure. This is the design consideration and this is met
successfully.

D. Wall shear and Reverse flow phenomena
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Fig 11 Wall shear contour Fig 12 Reverse flow

111. CONCLUSION
The results obtained suggest that the geometry considered is fail safe and can produce maximum power from basic input. The
design is also suitable for submerged conditions which is analysed from the reverse flow contours. The design behaves accordingly
to the theoretical assumptions with subtle deviations which can be considered negligible in the present scenario. The meshing was
robust and separate sections for the chamber and throat are designed keeping the focus entirely on the throat region. The flow
conditions considered here are standard and still there is scope for testing the nozzle in extreme real time conditions with
appropriate parameters.
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