

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: I Month of publication: January 2017

DOI:

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

www.ijraset.com Volume 5 Issue I, January 2017 IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

Integrability of Trigonometric Series with Coefficients Satisfying Certain Conditions

Dr. Manisha Sharma

¹Department of Applied Sciences, Krishna Engineering College, Ghaziabad, Uttar Pradesh-201007INDIA)

Abstract: Let $1 \le P < \infty$ and $-1 < \alpha P < P - 1$, suppose that $\{a_n\}$ is a sequence of Numbers such that $a_n \in A_j$ or

$$a_n \in A_{-j} \ \ \text{and} \left\{ \sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n) (a_n)^P \right\}^{1/P} < \infty \text{, then we will prove that } L^{1/P} \left(\frac{1}{x}\right) f(x) \in L(P,\alpha)$$

And
$$\left\|L^{1/P}\left(\frac{1}{x}\right)f(x)\right\|_{P,\alpha}^{P} \leq B(\alpha,P,j)\sum_{n=1}^{\infty}n^{P-\alpha P-2}L(n)(a_n)^{P}$$

& ii)Let $\{a_n\}$ be a sequence of numbers such that $a_n \in A_j$ or $a_n \in A_{-j}$. If $1 \le P < \infty$ and $-1 < \alpha P < P - 1$, then a necessary and sufficient condition that $L^{1/P}\left(\frac{1}{x}\right)f(x) \in L(P,\alpha)$ is that $\sum_{n=1}^{\infty} n^{P-\alpha P-2}L(n)a_n^{-P} < \infty$.

I. INTRODUCTION

A. Definitions

that

A function $\phi(x)$ is said to belong to class $L(P,\alpha)$ if $\int_{0}^{\pi} |\phi(x)|^{P} (\sin x)^{\alpha P} dx < \infty$, α is a real number and P>0, it is easy to see

$$L(P,\alpha) \Rightarrow L^P \text{ for } \alpha < 0 \text{ And}$$

$$L^{P} \Rightarrow L(P,\alpha)$$
 for $\alpha > 0$ And $L(P,\alpha) = L^{P}$ if $\alpha = 0$.

We define norm of a function
$$\phi(x) \in L(P,\alpha)$$
 as: $\|\phi(x)\|_{P,\alpha} = \left\{\int_{0}^{\pi} |\phi(x)|^{P} (\sin x)^{\alpha P} dx\right\}^{1/P}$

A positive continuous function L(x) is said to be "slowly increasing", in the sense of Karamata [4] if

$$\lim_{x \to \infty} \frac{L(kx)}{L(x)} = 1 \text{ For every } k > 0.$$

A sequence $\{a_n\}$ of non-negative number is said to be quasi-monotone [7, 9] if for some constant $\alpha \geq 0$

$$a_{n+1} \le a_n \left(1 + \frac{\alpha}{n}\right) \text{ for all } n > n_0(\alpha).$$

An equivalent definition is that $n^{-\beta}a_n \downarrow 0$ for some $\beta > 0$. We shall say that the coefficients of trigonometric series,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx \text{ and } g(x) = \sum_{n=1}^{\infty} a_n \sin nx \text{ belong to the class } A_j \text{ if for some } j \ge 0 \text{, the number } n^{-j}a_n, \ a_n \ge 0 \text{,}$$

www.ijraset.com Volume 5 Issue I, January 2017 IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

decreases and to the class A_{-j} if, for some j > 0, the number $n^j a_n$, $a_n \ge 0$ increases. The coefficients decrease monotonically to zero belongs to the class A_0 .

B. Some known results

Theorem_ If
$$0 < \upsilon < 1, a_n \downarrow 0$$
, then $x^{-\upsilon}L\left(\frac{1}{x}\right)f(x) \in L(0,\pi)$ if and only if $\sum_{n=1}^{\infty} n^{\upsilon-1}L(n)a_n$ is convergent.

Theorem_If $a_n \downarrow 0$, $P \ge 1$, and $-1 < \upsilon < 0$, then the necessary and sufficient condition that $\sum_{n=1}^{\infty} n^{-1+P\upsilon+P} L(n) a_n^{-P}$ should

converge, is that
$$x^{-1-P\upsilon}L\left(\frac{1}{x}\right)f^P(x) \in L(0,\pi)$$
.

Theorem_ Let $\{a_n\}$ is quasi-monotone if $\alpha < 1$ and such that $0 < M_1 \le n^\beta L_1(n) a_n \le M_2$ with $\beta > 0$, if $P \ge 1$ and $1 - P < \lambda < 1$. Then,

$$f(\lambda,L,P) = x^{-\lambda}L_2\left(\frac{1}{x}\right)f^P(x) \text{ is integrable in } (0,\pi) \text{ if and only if } \sum_{n=1}^{\infty}n^{\lambda+P-2}L_2(n)a_n^P < \infty \text{ , where } L_1 \text{ and } L_2 \text{ are slowly } L_2(n)a_n^P < \infty \text{ , where } L_1 \text{ and } L_2 \text{ are slowly } L_2(n)a_n^P < \infty \text{ .}$$

increasing function in the sense of Karamata.

Theorem_Let a_n be positive and tends to zero. Let $a_n n^{-k}$ be monotonically decreasing for some non-negative integer k. Let $1 \le P < \infty$ and $-1 < \alpha P < P - 1$, then a necessary and sufficient condition that $f(x) \in L(P,\alpha)$, where $f(x) \sim \sum_{n=1}^{\infty} a_n \cos nx$ is that

$$\sum_{n=1}^{\infty} n^{P-\alpha P-2} a_n^P < \infty.$$

Theorem_ Let $\{a_n\}$ be a positive sequence tending to zero and $\{a_n n^{-k}\}$ be monotonically decreasing for some non-negative integer k. If $1 \le P < \infty$ and $-1 < \alpha P < P - 1$ then the necessary and sufficient condition that $L^{1/P}\left(\frac{1}{x}\right)f(x) \in L(P,\alpha)$ is

that,
$$\sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n) a_n^P < \infty$$
 , where $f(x) \sim \sum_{n=1}^{\infty} a_n \cos nx$.

C. Our theorems

We shall prove the following theorems

Theorem_Let $1 \le P < \infty$ and $-1 < \alpha P < P - 1$, suppose that $\{a_n\}$ is a sequence of numbers such that $a_n \in A_j$ or $a_n \in A_{-j}$

$$\operatorname{and}\left\{\sum_{n=1}^{\infty}n^{P-\alpha P-2}L(n)(a_n)^P\right\}^{1/P}<\infty\,,$$

Then,
$$L^{1/P}\left(\frac{1}{x}\right)f(x) \in L(P,\alpha)$$

And
$$\left\|L^{1/P}\left(\frac{1}{x}\right)f(x)\right\|_{P,\alpha}^{P} \leq B(\alpha,P,j)\sum_{n=1}^{\infty}n^{P-\alpha P-2}L(n)(a_n)^{P}$$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

Theorem Let $\{a_n\}$ be a sequence of numbers such that $a_n \in A_j$ or $a_n \in A_{-j}$. If $1 \le P < \infty$ and $-1 < \alpha P < P - 1$, then a necessary and sufficient condition that $L^{1/P}\bigg(\frac{1}{x}\bigg)f(x) \in L(P,\alpha)$ is that $\sum_{n=1}^{\infty} n^{P-\alpha P-2}L(n)a_n^{-P} < \infty$.

D. Lemmas

The following lemmas will be required for the proof of our theorems

1) Lemma: Let $f(x) \ge 0$ for $(x) \ge 0$ and f(x) be the integral of f(x). If $1 \le P < q$ and r > 1 then

$$\left\{ \int_{0}^{\infty} t^{-1-qr} \left(L\left(\frac{1}{t}\right) \frac{f(t)}{t} \right)^{q} dt \right\}^{1/q} \leq B \left\{ \int_{0}^{\infty} t^{-1-\Pr} \left(L\left(\frac{1}{t}\right) f(t) \right)^{P} dt \right\}^{1/P} \\
\left\{ \int_{0}^{\infty} t^{-1-qr} \left(L(t) \frac{f(t)}{t} \right)^{q} dt \right\}^{1/q} \leq B \left\{ \int_{0}^{\infty} t^{-1-\Pr} \left(L(t) f(t) \right)^{P} dt \right\}^{1/P}$$

2) Lemm: Let $\sum_{n=1}^{\infty} a_n$ be a series of positive terms and $A_n = \sum_{k=n}^{\infty} a_k$ and suppose that

$$\sum_{n=1}^{\infty} n^{-c} L(n) (na_n)^{p,} < \infty, (P \ge 1, c < 1), \text{ then } \sum_{n=1}^{\infty} n^{-c} L(n) A_n^{-P} \le B \sum_{n=1}^{\infty} n^{-c} L(n) (na_n)^{p,}, \text{ where B is some constant } C(n) (na_n)^{p,} = C(n) (na_n)$$

depending upon c and P.

3) Lemma: For any non-negative v and n, we have

$$\left|\sum_{k=2^{\nu}(n+1)}^{2^{\nu+1}(n+1)-1} a_{k} \phi(kx)\right| \leq \begin{cases} \frac{2j}{\left|\sin \frac{x}{2}\right|} a_{2^{\nu}(n+1),}, & \text{if } a_{k} \in A_{j} \\ \frac{2j}{\left|\sin \frac{x}{2}\right|} a_{2^{\nu+1}(n+1)-1,}, & \text{if } a_{k} \in A_{-j} \end{cases}$$

$$x \neq 2k\pi$$
, $k = 0,\pm 1,\pm 2,\ldots$ Where $\phi(x) = \cos x$ or $\phi(x) = \sin x$

4) Lemma: If $a_k \in A_j$ or $a_k \in A_{-j}$ then

$$\sum_{\nu=1}^{\infty} \left[2^{\nu} (n+1) \right]^{1+\alpha} a_{2^{\nu} (n+1)} \leq c_1(\alpha,j) \sum_{k=n+1}^{\infty} k^{\alpha} a_k \text{ if } a_k \in A_j,$$

$$\sum_{\nu=0}^{\infty} \left[2^{\nu} (n+1) \right]^{1+\alpha} a_{2^{\nu} (n+1)} \le c_2(\alpha, j) \sum_{k=n+1}^{\infty} k^{\alpha} a_k \text{ if } a_k \in A_{-j},$$

Where.

$$C_{1}(\alpha, j) = \begin{cases} 2 & \text{for } \alpha + j \leq 0 \\ 2^{1+\alpha+j} & \text{for } \alpha + j > 0 \end{cases}$$

$$C_{2}(\alpha, j) = \begin{cases} 1 & \text{for } \alpha - j \ge 0 \\ 2^{j-1} & \text{for } \alpha - j < 0 \end{cases}$$

5) Lemma: Let $\{a_n\}$ be a sequence of non-negative terms and

www.ijraset.com IC Value: 45.98

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

$$A(n) = \sum_{\frac{n}{2}+1}^{n}, \quad A^*(n) = \sum_{n=1}^{2n} a_k$$
 Then

$$na_n \le B(j)A(n)$$
 if $a_k \in A_j$

$$na_n \leq B(j)A^*(n)$$
 if $a_k \in A_{-i}$

Where B(j) is some positive constant depending on j.

Proof:

$$\sum_{k=s}^{m} \frac{a_k}{k^j} K^j \ge \frac{a_m}{m^j} s^j (m-s+1), \quad \text{if} \quad a_k \in A_j,$$

$$\sum_{k=s}^{m} a_k K^{j} k^{-j} \ge a_s S^{j} m^{j} (m-s+1), \quad \text{if} \quad a_k \in A_{-j},$$

We set
$$s = \left[\frac{n}{2}\right] + 1$$
, $m = n$ in (i) and $s = n$, $m = 2n$ in (ii), we have

$$na_n \le \frac{A_n}{\left[\left[\frac{n}{2}\right]+1\right]^j} n^{j+1} \le B(j)A(n)$$

And $na_n \leq B(j)A*(n)$.

This completes the proof of the lemma.

E. Proof of Theorem

Since we are given that $\sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n) a_n^P < \infty$, it follows by virtue of Lemma2 (putting $c = -p + \alpha p + 2$ and $a_k = \frac{a_k}{k}$)

$$\operatorname{that} \sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n) \Biggl(\sum_{k=n}^{\infty} \frac{a_k}{k} \Biggr)^p < \infty \text{ , further on putting n=1, we have } \sum_{k=1}^{\infty} \frac{a_k}{k} < \infty \text{ .}$$

Put
$$R_n(x) = \left| \sum_{k=n+1}^{\infty} a_k \cos kx \right| \le \left| \sum_{\nu=0}^{\infty} \sum_{k=2^{\nu}(n+1)}^{2^{\nu+1}(n+1)-1} a_k \cos kx \right|$$

$$\leq \frac{2j}{\left|\sin\frac{x}{2}\right|} \begin{cases} \sum_{v=0}^{\infty} a_{2^{v}(n+1),}, & \text{if } a_{k} \in A_{j} \\ \sum_{n=0}^{\infty} a_{2^{v+1}(n+1),}, & \text{if } a_{k} \in A_{-j} \end{cases}$$

 $x \neq 2k\pi$, $k = 0,\pm 1,\pm 2,\ldots$ by virtue of *lemma3* (choosing $\phi(x) = \cos x$)

Now using the particular case, when $\alpha = -1$ of *lemma 4*, we obtain

$$R_n(x) \le \frac{B^j}{\left|\sin\frac{x}{2}\right|} \left[a_{n+1} + \sum_{k=n+1}^{\infty} \frac{a_k}{k} \right], x \ne 2k\pi$$

Therefore series $\sum_{n=1}^{\infty} a_n \cos nx$ converges uniformly and is a Fourier series of the function f(x) which is continuous in $(0,2\pi)$. We

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

have
$$|f(x)| = \left| \sum_{k=1}^{\infty} a_k \cos kx \right| = \left| \sum_{k=1}^{n} a_k \cos kx + \sum_{k=n+1}^{\infty} a_k \cos kx \right|$$

$$\leq \sum_{k=1}^{n} a_k + \frac{B^j}{x} \left[a_{n+1} + \sum_{k=n+1}^{\infty} \frac{a_k}{k} \right]$$

$$\leq \sum_{k=1}^{n} a_k + O\left(\frac{1}{x}\right) a_{n+1} + O\left(\frac{1}{x}\right) \sum_{k=n+1}^{\infty} \frac{a_k}{k}$$

$$\leq s_{n+1} O\left(\frac{1}{x}\right) a_{n+1} + O\left(\frac{1}{x}\right) \left(\sum_{k=n+1}^{\infty} \frac{a_k}{k}\right)$$

Where
$$s_n = \sum_{k=1}^n a_k$$

Now
$$\int_{0}^{\pi/2} L\left(\frac{1}{x}\right) |f(x)|^{p} \left(\sin x\right)^{\alpha p} dx = \sum_{n=2}^{\infty} \int_{\pi/n+1}^{\pi/n} L\left(\frac{1}{x}\right) |f(x)|^{p} \left(\sin x\right)^{\alpha p} dx$$

$$\leq \sum_{n=2}^{\infty} \int_{\pi/n+1}^{\pi/n} L\left(\frac{1}{x}\right) \left\{ S_n + O\left(\frac{1}{x}\right) a_{n+1} + O\left(\frac{1}{x}\right) \left(\sum_{k=n+1}^{\infty} \frac{a_k}{k}\right) \right\}^p (\sin x)^{ap} dx$$

$$\leq B(p) \sum_{n=2}^{\infty} \int_{\pi/n+1}^{\pi/n} L\left(\frac{1}{x}\right) S_n^{p} (\sin x)^{\alpha p} dx + B(p,j) \sum_{n=2}^{\infty} \int_{\pi/n+1}^{\pi/n} L\left(\frac{1}{x}\right) (a_{n+1})^{p} (\sin x)^{\alpha p-p} dx$$

$$+B(p,j)\sum_{n=2}^{\infty}\int_{\pi/n+1}^{\pi/n}L\left(\frac{1}{x}\right)\left(\sum_{k=n+1}^{\infty}\frac{a_k}{k}\right)^p\left(\sin x\right)^{\alpha p-p}dx$$

$$\leq B(\alpha, p) \sum_{n=2}^{\infty} n^{-2-\alpha p} L(n) S_n^{p} + B(\alpha, p, j) \sum_{n=2}^{\infty} n^{p-\alpha p-2} L(n) (a_{n+1})^{p}$$

$$+B(\alpha,p,j)\sum_{n=2}^{\infty}n^{p-\alpha p-2}L(n)\left(\sum_{k=n+1}^{\infty}\frac{a_k}{k}\right)^p$$

$$= j_1 + j_2 + j_3$$
 (say)

Now put
$$a_{(x)} = a_n$$
 for $n - 1 \le x < n$ $(n = 1, 2,)$

And
$$A(x) = \int_{0}^{\pi} a(t)dt$$
 then, we have,

$$j_{1} \leq B(\alpha, p) \sum_{n=1}^{\infty} \int_{n}^{n+1} x^{-2-\alpha p} L(x) A^{p}(x) dx = B(\alpha, p) \int_{1}^{\infty} x^{-2-\alpha p+p} \left\{ \frac{L(x)^{1/p} A(x)}{x} \right\}^{p} dx$$

On applying lemma~(ii) (taking ~q=p~ and $-1-qr=p-\alpha p-2$) we get,

$$j_1 \le B(\alpha, p) \int_1^\infty x^{-2-\alpha p+p} L(x) (a(x))^p dx$$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

$$=B(\alpha,p)\sum_{n=2}^{\infty}\int_{n-1}^{n}x^{-2-\alpha p+p}L(x)(a(x))^{p}(x)dx$$

$$\leq B(\alpha,p) \sum_{n=1}^{\infty} n^{p-2-\alpha p} L(n) (a_n)^p$$

 $<\infty$, by hypothesis of

heses.

By virtue of lemma 2 the theorem,

 $j_2 = O(1)$ by the hypotand by the hypothesis,

$$j_3 = O(1)$$

A similar method may be used to estimate

$$\int_{\tau/2}^{\pi} |f(x)|^{P} (\sin x)^{\alpha P} dx$$

This finishes proof of theorem.

F. Proof of Theorem

$$\underline{\textit{Necessity}} \text{: Suppose that } L^{1/P} \bigg(\frac{1}{x} \bigg) f(x) \in L(P,\alpha) \text{ , then we have to prove, } \sum_{n=1}^{\infty} n^{p-2-\alpha p} L(n) \Big(a_n \Big)^p < \infty$$

Let
$$f_1(x) = \int_0^x f(u)du$$
, $f_2(x) = \int_0^x f_1(u)du$

Then
$$f_2(x) = \int_0^\infty \left(\sum_{k=1}^\infty \frac{a_k}{k} \sin ku \right) du$$

$$=\sum_{k=1}^{\infty}\frac{a_k}{k}\int_{0}^{x}\sin ku\ du$$

$$= \sum_{k=1}^{\infty} a_k (1 - \cos kx) k^{-2}$$

$$\geq \sum_{k=s}^{m} a_k (1 - \cos kx) k^{-2} \tag{A}$$

For any positive integers S and m,

Case I: When $a_k \in A_i$

Now set
$$x = \left[\frac{n}{2}\right] + 1$$
 and $m = n$ and using the inequality $1 - \cos nx \ge A \frac{nx^2}{2}$ for $\frac{\pi}{4(n+1)} \le x \le \frac{\pi}{4n}$, we have

 $A_n \le Bn^2 f_2(x)$, where B is some constant. By virtue of Lemma 5(i), it follows

$$na_n \le B(j)A_n \le B(j)n^2 f_2(x)$$

Now,
$$\sum_{n=1}^{\infty} n^{-2-\alpha p} L(n) (na_n)^p$$

www.ijraset.com IC Value: 45.98

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

$$\leq \mathbf{B}(j) \sum_{n=1}^{\infty} n^{2p-2-\alpha p} L(n) \min(f_2(x))^p$$

$$\left(\frac{\pi}{4(n+1)} \le x \le \frac{\pi}{4n}\right)$$

$$\leq B(j) \sum_{n=1}^{\infty} \int_{\frac{\pi}{4(n+1)}}^{\frac{\pi}{4n}} (\sin x)^{-2p+\alpha p} L(\frac{1}{x}) f_2^{p}(x) dx$$

$$\leq B(j) \int_{0}^{\frac{\pi}{4}} (\sin x)^{-p+\alpha p} \left\{ \frac{L(\frac{1}{x})^{1/p} f_{2}(x)}{x} \right\}^{p} dx,$$

$$\leq B(\alpha, p, j) \int_{0}^{\frac{\pi}{4}} (\sin x)^{-p+\alpha p} \left\{ (L(\frac{1}{x}))^{1/p} \left| f_{1}(x) \right| \right\}^{p} dx$$

$$\leq B(\alpha, p, j) \int_{0}^{\frac{\pi}{4}} \left(\sin x \right)^{\alpha p} \left\{ L\left(\frac{1}{x}\right)^{1/p} \left| f\left(x\right) \right| \right\}^{p} dx$$

$$=B(\alpha,p,j)\left\|L^{1/p}\left(\frac{1}{x}\right)f(x)\right\|_{p,\alpha}^{p}<\infty$$

This follows by lemmal (i) (q = p, $\alpha p - p = -1 - pr$ and $\alpha p = -1 - pr$ respectively)

<u>Case II</u>: When $a_k \in A_j$, we set s = n and m = 2n in (A) and obtain

$$A_n^* \le Bn^2 f_2(x)$$
 For $\frac{\pi}{8(n+1)} \le x \le \frac{\pi}{8n}$

By lemma 5(ii) we get $na_n \le B(j)n^2 f_2(x)$

Now,
$$\sum_{n=1}^{\infty} n^{-2-\alpha p} L(n) (na_n)^p$$

$$\leq \mathbf{B}(j) \sum_{n=1}^{\infty} n^{2p-2-\alpha p} L(n) \min(f_2(x))^p, \quad \frac{\pi}{8(n+1)} \leq x \leq \frac{\pi}{8n}$$

$$\leq B(j) \sum_{n=1}^{\infty} \int_{\frac{\pi}{8(n+1)}}^{\frac{\pi}{8n}} (\sin x)^{-2p+\alpha p} L(\frac{1}{x}) f_2^{p}(x) dx$$

$$\leq B(j) \int_{0}^{\frac{\pi}{8}} (\sin x)^{-p+\alpha p} \left\{ \frac{L(\frac{1}{x})^{1/p} f_2(x)}{x} \right\}^{p} dx < \infty \text{ By some agreement as in the } case I \text{ this possesses the necessity part of } dx < \infty \text{ By some agreement as in the } case I \text{ this possesses the necessity part of } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as in the } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By some agreement as } dx < \infty \text{ By s$$

theorem2

$$\underline{\textit{Sufficiency}} \text{: Now suppose that } \sum_{n=1}^{\infty} n^{p-2-\alpha p} L(n) \Big(n a_n \Big)^p \leq \infty \text{ . Then we have to show } L^{1/P} \bigg(\frac{1}{x} \bigg) f(x) \in L(P,\alpha) \text{ .}$$

This follows by theorem 1 and proof of the theorem is thus completed.

II. CONCLUSION

Theorem 1 and theorem 2 also hold for sine series. The proof of sufficiency part for sine series follows exactly in a same way as in

www.ijraset.com Volume 5 Issue I, January 2017 IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

case of theorem1 while, for proof of necessity part, some miner changes are required.

For sake of convenience the *theorem 1* is stated and proved otherwise theorem is essentially the same as $\sum -\int$ part of theorem 2.

Our theorem 2 is not only more general then a result of Askey and Wainger [2] and theorem of Khan [5], but has a proof applicable in sine and cosine series both.

In the end I wish to express my sincere thanks to "Dr. J.P. Singh" for his kind guidance.

REFERENCES

- [1] Aljancic, S R. Bojanic and M. Tomic: Sur I Integrability de certain series trigonometriques, Acad. Serbe sc. Publ Inst. Math, 8(1955), 67-84
- [2] Askey, R and S. Wainger: Integrability theorems for Fourier series, Duke Math. Jour 33 (1966), 223-228.
- [3] Igari, S: Some integrability theorems of trigonometric series and monotone decreasing functions, Tohoku math. J. (2) 12 (1960), 139-146
- [4] Karamata, J: Sur Un mode de croissunce reguliers Bull. Soc. Math France 61 (1933) 55-62
- [5] Khan R. S.: Intregrability of Trigonometric series Rend. Mat (3-4). (1968) 371-383
- [6] Lebed, G. K: Trigonometric series with coefficients satisfying certain conditions, Math.Sbornik 74 (116)(1967) 100-118. (Russian) English translation Math SSSR Sbornik 3(1967)91-108 (1969)
- [7] Shah, S. M.: A note on quasi- monotone series, The Math student 15(1947), 19-24
- [8] Trigonometric series with quasi- monotone coefficients, proc. Amer. Math. Soc.13 (1962), 266-273
- [9] Szasz, O: Quasi-monotone series, Amer. J. Math. 70(1948), 203-206.
- [10] Yong, C. H.: Integrability theorems of certain trigonometric series with quasi-monotone coefficients, Monatsh math 69 (1965), 441-450
- [11] Zygmund, A: Trigonometric series, 2nd ED Cambridge univ press, 1959.

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)