
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Integrability of Trigonometric Series with Coefficients

Satisfying Certain Conditions

Dr. Manisha Sharma
${ }^{1}$ Department of Applied Sciences, Krishna Engineering College, Ghaziabad, Uttar Pradesh-201007INDIA)

Abstract: Let $1 \leq P<\infty$ and $-1<\alpha P<P-1$, suppose that $\left\{a_{n}\right\}$ is a sequence of ,Numbers such that $a_{n} \in A_{j}$ or $a_{n} \in A_{-j}$ and $\left\{\sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n)\left(a_{n}\right)^{P}\right\}^{1 / P}<\infty$, then we will prove that $L^{1 / P}\left(\frac{1}{x}\right) f(x) \in L(P, \alpha)$
And $\left\|L^{1 / P}\left(\frac{1}{x}\right) f(x)\right\|_{P, \alpha}^{P} \leq B(\alpha, P, j) \sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n)\left(a_{n}\right)^{P}$
\& ii)Let $\left\{a_{n}\right\}$ be a sequence of numbers such that $a_{n} \in A_{j}$ or $a_{n} \in A_{-j}$. If $1 \leq P<\infty \quad$ and $-1<\alpha P<P-1$, then a necessary and sufficient condition that $L^{1 / P}\left(\frac{1}{x}\right) f(x) \in L(P, \alpha)$ is that $\sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n) a_{n}{ }^{P}<\infty$.

I. INTRODUCTION

A. Definitions

A function $\phi(x)$ is said to belong to class $L(P, \alpha)$ if $\int_{0}^{\pi}|\phi(x)|^{P}(\sin x)^{\alpha P} d x<\infty, \alpha$ is a real number and $\mathrm{P}>0$, it is easy to see that
$L(P, \alpha) \Rightarrow L^{P}$ for $\alpha<0$ And
$L^{P} \Rightarrow L(P, \alpha)$ for $\alpha>0$ And $L(P, \alpha)=L^{P}$ if $\alpha=0$.
We define norm of a function $\phi(x) \in L(P, \alpha)$ as: $\quad\|\phi(x)\|_{P, \alpha}=\left\{\int_{0}^{\pi}|\phi(x)|^{P}(\sin x)^{\alpha P} d x\right\}^{1 / P}$
A positive continuous function $L(x)$ is said to be "slowly increasing", in the sense of Karamata [4] if
$\lim _{x \rightarrow \infty} \frac{L(k x)}{L(x)}=1$ For every $k>0$.
A sequence $\left\{a_{n}\right\}$ of non-negative number is said to be quasi-monotone [7, 9] if for some constant $\alpha \geq 0$
$a_{n+1} \leq a_{n}\left(1+\frac{\alpha}{n}\right)$ for all $n>n_{0}(\alpha)$.
An equivalent definition is that $n^{-\beta} a_{n} \downarrow 0$ for some $\beta>0$. We shall say that the coefficients of trigonometric series,
$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x$ and $g(x)=\sum_{n=1}^{\infty} a_{n} \sin n x$ belong to the class A_{j} if for some $j \geq 0$, the number $n^{-j} a_{n}, a_{n} \geq 0$,

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

decreases and to the class A_{-j} if, for some $j>0$, the number $n^{j} a_{n}, a_{n} \geq 0$ increases. The coefficients decrease monotonically to zero belongs to the class A_{0}.

B. Some known results

Theorem_ If $0<v<1, a_{n} \downarrow 0$, then $x^{-v} L\left(\frac{1}{x}\right) f(x) \in L(0, \pi)$ if and only if $\sum_{n=1}^{\infty} n^{v-1} L(n) a_{n}$ is convergent.
Theorem_If $a_{n} \downarrow 0, P \geq 1$, and $-1<v<0$, then the necessary and sufficient condition that $\sum_{n=1}^{\infty} n^{-1+P v+P} L(n) a_{n}{ }^{P}$ should converge, is that $x^{-1-P v} L\left(\frac{1}{x}\right) f^{P}(x) \in L(0, \pi)$.
Theorem_ Let $\left\{a_{n}\right\}$ is quasi-monotone if $\alpha<1$ and such that $0<M_{1} \leq n^{\beta} L_{1}(n) a_{n} \leq M_{2}$ with $\beta>0$, if $P \geq 1$ and $1-P<\lambda<1$. Then,
$f(\lambda, L, P)=x^{-\lambda} L_{2}\left(\frac{1}{x}\right) f^{P}(x)$ is integrable in $(0, \pi)$ if and only if $\sum_{n=1}^{\infty} n^{\lambda+P-2} L_{2}(n) a_{n}{ }^{P}<\infty$, where L_{1} and L_{2} are slowly increasing function in the sense of Karamata.
Theorem_Let a_{n} be positive and tends to zero. Let $a_{n} n^{-k}$ be monotonically decreasing for some non-negative integer k . Let $1 \leq P<\infty \quad$ and $-1<\alpha P<P-1$, then a necessary and sufficient condition that $f(x) \in L(P, \alpha)$, where $f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x$ is that
$\sum_{n=1}^{\infty} n^{P-\alpha P-2} a_{n}{ }^{P}<\infty$.
Theorem_ Let $\left\{a_{n}\right\}$ be a positive sequence tending to zero and $\left\{a_{n} n^{-k}\right\}$ be monotonically decreasing for some non-negative integer k. If $1 \leq P<\infty$ and $-1<\alpha P<P-1$ then the necessary and sufficient condition that $L^{1 / P}\left(\frac{1}{x}\right) f(x) \in L(P, \alpha)$ is that, $\sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n) a_{n}{ }^{P}<\infty$, where $f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x$.
C. Our theorems

We shall prove the following theorems
Theorem_ Let $1 \leq P<\infty$ and $-1<\alpha P<P-1$, suppose that $\left\{a_{n}\right\}$ is a sequence of numbers such that $a_{n} \in A_{j}$ or $a_{n} \in A_{-j}$ and $\left\{\sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n)\left(a_{n}\right)^{P}\right\}^{1 / P}<\infty$,
Then, $L^{1 / P}\left(\frac{1}{x}\right) f(x) \in L(P, \alpha)$
And $\left\|L^{1 / P}\left(\frac{1}{x}\right) f(x)\right\|_{P, \alpha}^{P} \leq B(\alpha, P, j) \sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n)\left(a_{n}\right)^{P}$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Theorem Let $\left\{a_{n}\right\}$ be a sequence of numbers such that $a_{n} \in A_{j}$ or $a_{n} \in A_{-j}$. If $1 \leq P<\infty$ and $-1<\alpha P<P-1$, then a necessary and sufficient condition that $L^{1 / P}\left(\frac{1}{x}\right) f(x) \in L(P, \alpha)$ is that $\sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n) a_{n}{ }^{P}<\infty$.
D. Lemmas

The following lemmas will be required for the proof of our theorems

1) Lemma: Let $f(x) \geq 0$ for $(x) \geq 0$ and $\mathrm{f}(\mathrm{x})$ be the integral of $\mathrm{f}(\mathrm{x})$. If $1 \leq P<q$ and $\mathrm{r}>-1$ then
$\left\{\int_{0}^{\infty} t^{-1-q r}\left(L\left(\frac{1}{t}\right) \frac{f(t)}{t}\right)^{q} d t\right\}^{1 / q} \leq B\left\{\int_{0}^{\infty} t^{-1-\operatorname{Pr}}\left(L\left(\frac{1}{t}\right) f(t)\right)^{P} d t\right\}^{1 / P}$
$\left\{\int_{0}^{\infty} t^{-1-q r}\left(L(t) \frac{f(t)}{t}\right)^{q} d t\right\}^{1 / q} \leq B\left\{\int_{0}^{\infty} t^{-1-\operatorname{Pr}}(L(t) f(t))^{P} d t\right\}^{1 / P}$
2) Lemm : Let $\sum_{n=1}^{\infty} a_{n}$ be a series of positive terms and $A_{n}=\sum_{k=n}^{\infty} a_{k}$ and suppose that
$\sum_{n=1}^{\infty} n^{-c} L(n)\left(n a_{n}\right)^{p,}<\infty,(P \geq 1, c<1)$, then $\sum_{n=1}^{\infty} n^{-c} L(n) A_{n}{ }^{P} \leq B \sum_{n=1}^{\infty} n^{-c} L(n)\left(n a_{n}\right)^{p,}$, where B is some constant depending upon c and P .
3) Lemma: For any non-negative v and n, we have
$\left|\sum_{k=2^{v}(n+1)}^{2^{v+1}(n+1)-1} a_{k} \phi(k x)\right| \leq\left\{\begin{array}{l}\frac{2 j}{\left|\sin \frac{x}{2}\right|} a_{2^{v}(n+1),}, \text { if } a_{k} \in A_{j} \\ \frac{2 j}{\left|\sin \frac{x}{2}\right|} a_{2^{v+1}(n+1)-1,}, \text { if } a_{k} \in A_{-j}\end{array}\right.$
$x \neq 2 k \pi, k=0, \pm 1, \pm 2, \ldots \ldots$. Where $\phi(x)=\cos x$ or $\phi(x)=\sin x$
4) Lemma: If $a_{k} \in A_{j}$ or $a_{k} \in A_{-j}$ then
$\sum_{v=1}^{\infty}\left[2^{v}(n+1)\right]^{1+\alpha} a_{2^{v}(n+1)} \leq c_{1}(\alpha, j) \sum_{k=n+1}^{\infty} k^{\alpha} a_{k}$ if $a_{k} \in A_{j}$,
$\sum_{v=0}^{\infty}\left[2^{v}(n+1)\right]^{1+\alpha} a_{2^{v}(n+1)} \leq c_{2}(\alpha, j) \sum_{k=n+1}^{\infty} k^{\alpha} a_{k}$ if $a_{k} \in A_{-j}$,
Where,
$C_{1}(\alpha, j)= \begin{cases}2 & \text { for } \alpha+j \leq 0 \\ 2^{1+\alpha+j} & \text { for } \alpha+j>0\end{cases}$
$C_{2}(\alpha, j)= \begin{cases}1 & \text { for } \alpha-j \geq 0 \\ 2^{j-1} & \text { for } \alpha-j<0\end{cases}$
5) Lemma: Let $\left\{a_{n}\right\}$ be a sequence of non-negative terms and

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$A(n)=\sum_{\left(\frac{n}{2}\right)+1}^{n}, \quad A^{*}(n)=\sum_{n}^{2 n} a_{k}$ Then
$n a_{n} \leq B(j) A(n) \quad$ if $a_{k} \in A_{j}$
$n a_{n} \leq B(j) A^{*}(n) \quad$ if $a_{k} \in A_{-j}$
Where $B(j)$ is some positive constant depending on j.
Proof:
$\sum_{k=s}^{m} \frac{a_{k}}{k^{j}} K^{j} \geq \frac{a_{m}}{m^{j}} s^{j}(m-s+1), \quad$ if $\quad a_{k} \in A_{j}$,
$\sum_{k=s}^{m} a_{k} K^{j} k^{-j} \geq a_{s} s^{j} m^{j}(m-s+1), \quad$ if $\quad a_{k} \in A_{-j}$,
We set $s=\left[\frac{n}{2}\right]+1, m=n$ in (i) and $s=n, m=2 n$ in (ii), we have
$n a_{n} \leq \frac{A_{n}}{\left.\left[\frac{n}{2}\right\rfloor+1\right]^{j}} n^{j+1} \leq B(j) A(n)$
And $n a_{n} \leq B(j) A *(n)$.
This completes the proof of the lemma.

E. Proof of Theorem

Since we are given that $\sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n) a_{n}{ }^{P}<\infty$, it follows by virtue of Lemma2 (putting $c=-p+\alpha p+2$ and $a_{k}=a_{k} / k$) that $\sum_{n=1}^{\infty} n^{P-\alpha P-2} L(n)\left(\sum_{k=n}^{\infty} \frac{a_{k}}{k}\right)^{p}<\infty$, further on putting $\mathrm{n}=1$, we have $\sum_{k=1}^{\infty} \frac{a_{k}}{k}<\infty$.
Put $R_{n}(x)=\left|\sum_{k=n+1}^{\infty} a_{k} \cos k x\right| \leq\left|\sum_{v=0}^{\infty} \sum_{k=2^{v}(n+1)}^{2^{v+1}(n+1)-1} a_{k} \cos k x\right|$

$$
\leq \frac{2 j}{\left|\sin \frac{x}{2}\right|}\left\{\begin{array}{l}
\sum_{v=0}^{\infty} a_{2^{v}(n+1)}, \text { if } a_{k} \in A_{j} \\
\sum_{v=0}^{\infty} a_{2^{v+1}(n+1)}, \text { if } a_{k} \in A_{-j}
\end{array}\right.
$$

$x \neq 2 k \pi, k=0, \pm 1, \pm 2, \ldots \ldots .$. by virtue of lemma3 (choosing $\phi(x)=\cos x$)
Now using the particular case, when $\alpha=-1$ of lemma 4 , we obtain
$R_{n}(x) \leq \frac{B^{j}}{\left|\sin \frac{x}{2}\right|}\left[a_{n+1}+\sum_{k=n+1}^{\infty} \frac{a_{k}}{k}\right], x \neq 2 k \pi$
Therefore series $\sum_{n=1}^{\infty} a_{n} \cos n x$ converges uniformly and is a Fourier series of the function $f(x)$ which is continuous in $(0,2 \pi)$. We

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

have $|f(x)|=\left|\sum_{k=1}^{\infty} a_{k} \cos k x\right|=\left|\sum_{k=1}^{n} a_{k} \cos k x+\sum_{k=n+1}^{\infty} a_{k} \cos k x\right|$

$$
\begin{aligned}
& \leq \sum_{k=1}^{n} a_{k}+\frac{B^{j}}{x}\left[a_{n+1}+\sum_{k=n+1}^{\infty} \frac{a_{k}}{k}\right] \\
& \leq \sum_{k=1}^{n} a_{k}+O\left(\frac{1}{x}\right) a_{n+1}+O\left(\frac{1}{x}\right) \sum_{k=n+1}^{\infty} \frac{a_{k}}{k} \\
& \leq s_{n} O\left(\frac{1}{x}\right) a_{n+1}+O\left(\frac{1}{x}\right)\left(\sum_{k=n+1}^{\infty} \frac{a_{k}}{k}\right)
\end{aligned}
$$

Where $s_{n}=\sum_{k=1}^{n} a_{k}$

$$
\begin{aligned}
& \text { Now } \int_{0}^{\pi / 2} L\left(\frac{1}{x}\right)|f(x)|^{p}(\sin x)^{\alpha p} d x=\sum_{n=2}^{\infty} \int_{\pi / n+1}^{\pi / n} L\left(\frac{1}{x}\right)|f(x)|^{p}(\sin x)^{\alpha p} d x \\
& \leq \sum_{n=2}^{\infty} \int_{\pi / n+1}^{\pi / n} L\left(\frac{1}{x}\right)\left\{S_{n}+O\left(\frac{1}{x}\right) a_{n+1}+O\left(\frac{1}{x}\right)\left(\sum_{k=n+1}^{\infty} \frac{a_{k}}{k}\right)\right\}^{p}(\sin x)^{\alpha p} d x \\
& \leq B(p) \sum_{n=2}^{\infty} \int_{\pi / n+1}^{\pi / n} L\left(\frac{1}{x}\right) S_{n}{ }^{p}(\sin x)^{\alpha p} d x+B(p, j) \sum_{n=2}^{\infty} \int_{\pi / n+1}^{\pi / n} L\left(\frac{1}{x}\right)\left(a_{n+1}\right)^{p}(\sin x)^{\alpha p-p} d x \\
& +B(p, j) \sum_{n=2}^{\infty} \int_{\pi / n+1}^{\pi / n} L\left(\frac{1}{x}\right)\left(\sum_{k=n+1}^{\infty} \frac{a_{k}}{k}\right)^{p}(\sin x)^{\alpha p-p} d x \\
& \leq B(\alpha, p) \sum_{n=2}^{\infty} n^{-2-\alpha p} L(n) S_{n}{ }^{p}+B(\alpha, p, j) \sum_{n=2}^{\infty} n^{p-\alpha p-2} L(n)\left(a_{n+1}\right)^{p} \\
& +B(\alpha, p, j) \sum_{n=2}^{\infty} n^{p-\alpha p-2} L(n)\left(\sum_{k=n+1}^{\infty} \frac{a_{k}}{k}\right)^{p}
\end{aligned}
$$

$=j_{1}+j_{2}+j_{3}$ (say)
Now put $a_{(x)}=a_{n}$ for $n-1 \leq x<n \quad(n=1,2, \ldots \ldots)$
And $A(x)=\int_{0}^{\pi} a(t) d t$ then, we have,

$$
j_{1} \leq B(\alpha, p) \sum_{n=1}^{\infty} \int_{n}^{n+1} x^{-2-\alpha p} L(x) A^{p}(x) d x=B(\alpha, p) \int_{1}^{\infty} x^{-2-\alpha p+p}\left\{\frac{L(x)^{1 / p} A(x)}{x}\right\}^{p} d x
$$

On applying lemma (ii) (taking $q=p$ and $-1-q r=p-\alpha p-2$) we get,
$j_{1} \leq B(\alpha, p) \int_{1}^{\infty} x^{-2-\alpha p+p} L(x)(a(x))^{p} d x$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$=B(\alpha, p) \sum_{n=2}^{\infty} \int_{n-1}^{n} x^{-2-\alpha p+p} L(x)(a(x))^{p}(x) d x$
$\leq B(\alpha, p) \sum_{n=1}^{\infty} n^{p-2-\alpha p} L(n)\left(a_{n}\right)^{p}$
$<\infty$, by hypothesis of
heses.
By virtue of lemma 2 the theorem,
$j_{2}=O(1)$ by the hypotand by the hypothesis,
$j_{3}=O(1)$
A similar method may be used to estimate
$\int_{\pi / 2}^{\pi}|f(x)|^{P}(\sin x)^{\alpha P} d x$
This finishes proof of theorem.

F. Proof of Theorem

Necessity: Suppose that $L^{1 / P}\left(\frac{1}{x}\right) f(x) \in L(P, \alpha)$, then we have to prove, $\sum_{n=1}^{\infty} n^{p-2-\alpha p} L(n)\left(a_{n}\right)^{p}<\infty$
Let $f_{1}(x)=\int_{0}^{x} f(u) d u, f_{2}(x)=\int_{0}^{x} f_{1}(u) d u$
Then $f_{2}(x)=\int_{0}^{\infty}\left(\sum_{k=1}^{\infty} \frac{a_{k}}{k} \sin k u\right) d u$
$=\sum_{k=1}^{\infty} \frac{a_{k}}{k} \int_{0}^{x} \sin k u d u$
$=\sum_{k=1}^{\infty} a_{k}(1-\cos k x) k^{-2}$
$\geq \sum_{k=s}^{m} a_{k}(1-\cos k x) k^{-2}$
For any positive integers s and m,
Case I: When $a_{k} \in A_{j}$
Now set $x=\left[\frac{n}{2}\right]+1$ and $m=n$ and using the inequality $1-\cos n x \geq A \frac{n x^{2}}{2}$ for $\frac{\pi}{4(n+1)} \leq x \leq \frac{\pi}{4 n}$, we have $A_{n} \leq B n^{2} f_{2}(x)$, where B is some constant. By virtue of Lemma $5(i)$, it follows
$n a_{n} \leq B(j) A_{n} \leq B(j) n^{2} f_{2}(x)$
Now, $\sum_{n=1}^{\infty} n^{-2-\alpha p} L(n)\left(n a_{n}\right)^{p}$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$\leq \mathbf{B}(j) \sum_{n=1}^{\infty} n^{2 p-2-\alpha p} L(n) \min \left(f_{2}(x)\right)^{p}$
$\left(\frac{\pi}{4(n+1)} \leq x \leq \frac{\pi}{4 n}\right)$
$\leq B(j) \sum_{n=1}^{\infty} \int_{\frac{\pi}{4}(n+1)}^{\frac{\pi}{4 n}}(\sin x)^{-2 p+a p} L\left(\frac{1}{x}\right) f_{2}^{p}(x) d x$
$\leq B(j) \int_{0}^{\frac{\pi}{4}}(\sin x)^{-p+\alpha p}\left\{\frac{L\left(\frac{1}{x}\right)^{1 / p} f_{2}(x)}{x}\right\}^{p} d x$,
$\leq B(\alpha, p, j) \int_{0}^{\frac{\pi}{4}}(\sin x)^{-p+\alpha p}\left\{\left.\left(L\left(\frac{1}{x}\right)\right)^{1 / p} \right\rvert\, f_{1}(x)\right\}^{p} d x$
$\left.\leq B(\alpha, p, j) \int_{0}^{\frac{\pi}{4}}(\sin x)^{\alpha p}\left\{\left.L\left(\frac{1}{x}\right)^{1 / p} \right\rvert\, f(x)\right\}\right\}^{p} d x$
$=B(\alpha, p, j)\left\|L^{1 / p}\left(\frac{1}{x}\right) f(x)\right\|_{p, \alpha}^{p}<\infty$
This follows by lemmal (i) ($q=p, \alpha p-p=-1-p r$ and $\alpha p=-1-p r$ respectively)
Case II: When $a_{k} \in A_{j}$, we set $s=n$ and $m=2 n$ in (A) and obtain

$$
A_{n}^{*} \leq B n^{2} f_{2}(x) \quad \text { For } \frac{\pi}{8(n+1)} \leq x \leq \frac{\pi}{8 n}
$$

By lemma 5(ii) we get $n a_{n} \leq B(j) n^{2} f_{2}(x)$
Now, $\sum_{n=1}^{\infty} n^{-2-\alpha p} L(n)\left(n a_{n}\right)^{p}$
$\leq \mathbf{B}(j) \sum_{n=1}^{\infty} n^{2 p-2-\alpha p} L(n) \min \left(f_{2}(x)\right)^{p}, \quad \frac{\pi}{8(n+1)} \leq x \leq \frac{\pi}{8 n}$
$\leq B(j) \sum_{n=1}^{\infty} \int_{\frac{\pi}{8(n+1)}}^{\frac{\pi}{8 n}}(\sin x)^{-2 p+\alpha p} L\left(\frac{1}{x}\right) f_{2}^{p}(x) d x$
$\leq B(j) \int_{0}^{\frac{\pi}{8}}(\sin x)^{-p+\alpha p}\left\{\frac{L\left(\frac{1}{x}\right)^{1 / p} f_{2}(x)}{x}\right\}^{p} d x<\infty$ By some agreement as in the case I this possesses the necessity part of
theorem2.
Sufficiency: Now suppose that $\sum_{n=1}^{\infty} n^{p-2-\alpha p} L(n)\left(n a_{n}\right)^{p} \leq \infty$. Then we have to show $L^{1 / P}\left(\frac{1}{x}\right) f(x) \in L(P, \alpha)$.
This follows by theorem 1 and proof of the theorem is thus completed.

II. CONCLUSION

Theorem1 and theorem 2 also hold for sine series. The proof of sufficiency part for sine series follows exactly in a same way as in

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

case of theorem1 while, for proof of necessity part, some miner changes are required.
For sake of convenience the theorem 1 is stated and proved otherwise theorem is essentially the same as $\sum-\int$ part of theorem 2.
Our theorem 2 is not only more general then a result of Askey and Wainger [2] and theorem of Khan [5], but has a proof applicable in sine and cosine series both.
In the end I wish to express my sincere thanks to "Dr. J.P. Singh" for his kind guidance.

REFERENCES

[1] Aljancic, S R. Bojanic and M. Tomic: Sur I Integrability de certain series trigonometriques, Acad. Serbe sc. Pub1 Inst. Math, 8(1955), 67-84
[2] Askey, R and S. Wainger: Integrability theorems for Fourier series, Duke Math. Jour 33 (1966), 223-228.
[3] Igari, S: Some integrability theorems of trigonometric series and monotone decreasing functions, Tohoku math. J. (2) 12 (1960), 139-146
[4] Karamata, J: Sur Un mode de croissunce reguliers Bull. Soc. Math France 61 (1933) 55-62
[5] Khan R. S.: Intregrability of Trigonometric series Rend. Mat (3-4). (1968) 371-383
[6] Lebed, G. K: Trigonometric series with coefficients satisfying certain conditions, Math.Sbornik 74 (116)(1967) 100-118.(Russian) English translation Math SSSR Sbornik 3(1967)91-108 (1969)
[7] Shah, S. M.: A note on quasi- monotone series, The Math student 15(1947), 19-24
[8] Trigonometric series with quasi- monotone coefficients, proc. Amer. Math. Soc. 13 (1962), 266-273
[9] Szasz, O: Quasi- monotone series, Amer. J. Math. 70(1948), 203-206.
[10] Yong, C. H.: Integrability theorems of certain trigonometric series with quasi-monotone coefficients, Monatsh math 69 (1965), 441-450
[11] Zygmund, A: Trigonometric series, $2^{\text {nd }}$ ED Cambridge univ press, 1959.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

