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I. INTRODUCTION 

A. Definitions 

A function )(x  is said to belong to class  ,PL  if  


 
0

,)(sin)( dxxx PP
 is a real number and P>0, it is easy to see 

that 

  0,   forLPL P  And 

  0,   forPLLP  And   0,   ifLPL P . 

We define norm of a function     ,PLx   as:          
P

PP

P
dxxxx

/1

0
,

sin








 





                                                                         

A positive continuous function )(xL is said to be “slowly increasing”, in the sense of Karamata [4] if  
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decreases and to the class jA  if, for some 0j , the number n
j an , 0na  increases. The coefficients decrease monotonically 

to zero belongs to the class 0A . 

B.  Some known results 
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C. Our theorems 
We shall prove the following theorems 
Theorem  Let  P1  and 11  PP , suppose that { na } is a sequence of numbers such that jn Aa   or jn Aa   
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Theorem  Let { na } be a sequence of numbers such that jn Aa   or jn Aa  . If  P1  and 11  PP , then a 
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D. Lemmas 
The following lemmas will be required for the proof of our theorems 
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5) Lemma: Let { na } be a sequence of non-negative terms and  
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E. Proof of Theorem 
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This follows by theorem 1 and proof of the theorem is thus completed. 

II. CONCLUSION 
Theorem1 and theorem 2 also hold for sine series. The proof of sufficiency part for sine series follows exactly in a same way as in 
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case of theorem1 while, for proof of necessity part, some miner changes are required. 

For sake of convenience the theorem 1 is stated and proved otherwise theorem is essentially the same as   part of theorem 2. 

Our theorem 2 is not only more general then a result of Askey and Wainger [2] and theorem of Khan [5], but has a proof applicable 
in sine and cosine series both. 
In the end I wish to express my sincere thanks to “Dr. J.P. Singh” for his kind guidance. 
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