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Abstract: An unmanned ground vehicle (UGV) has many applications in a variety of fields. Detection and tracking of a specific 
road in UGV videos play an important role in automatic UGV navigation, traffic monitoring, and is very helpful for constructing 
road networks for modeling and simulation. In this paper, an efficient road detection and tracking framework in UGV videos is 
proposed. In particular, a graph-cut–based detection approach is given to accurately extract a specified road region during the 
initialization stage and in the middle of tracking process, and a fast homography-based tracking scheme is developed to 
automatically tracking road areas. The high efficiency of our framework is attributed to two aspects: the road detection is 
performed only when needed and most work in locating the road is rapidly done via very fast homography-based tracking. 
Experiments are conducted on UGV videos of real road scenes we captured and downloaded from the Internet. The astonishing 
results indicate the effectiveness of our proposed work, with the precision of 98.4% and  1046 × 595 videos on average with pro-
cessing 34 frames per second. 
Index Terms: Graph Cut algorithm, homography, road detection, road tracking, unmanned aerial vehicle (UAV). 

I. INTRODUCTION 
Unmanned ground vehicles (UGVs) have been widely used in many fields, particularly in transportation. The major applications 
include security surveillance, traffic monitoring, inspection of road construction, and survey of traffic, river, coastline, pipeline, etc. 
Relevant research can be traced back to the 2000s in the transportation departments of the Ohio [1], Florida [2], Georgia [3], and 
California [4] states within the United States. They use UGVs in autonomous navigation to follow roads/rivers, oil-gas pipeline 
inspection, and traffic parameters measurements. UAVs equipped with cameras are viewed as a low-cost platform that can provide 
efficient data acquisition methods for intelligent transport systems. With the increasing vehicles usage  and their traffic management 
demands. this kind of platform becomes attractively popular. Conventional traffic data collection [5] relying on fixed infrastructure 
is only limited to a local region and, thus, it is expensive and labor intensive to monitor traffic activities across broad areas. In 
comparison, UAV has advantages, including: 
There is a low cost to monitor over long distances;  it is flexible for flying across broad spatial and temporal scales; and it is capable 
of carrying various types of sensors to collect abundant data. Detection in deep about road areas can provide users the regions of 
interest for further navigation, detection and data collection procedures, benefiting their efficiencies and accuracies. 
In the previous works of road detection and tracking, most approaches use the color (texture) and/or structure (geometry) properties 
of roads. Among them, the combination of road color and boundary information have achieved more robust and ac-curate results 
than using only one of them in road detection, as shown in the work [6], [7]. Therefore, we are paying a note of using both types of 
information. Because real time is required in many UAV-based applications, our major target is how to effectively combine both 
types of information for road detection/ tracking in an efficient way. There are two rules that  make one integrated framework 
efficient. First, each and every component of the framework should be fast.  Second, if one component is faster than the others in 
achieving the  same purpose, fastest component should be prioritized as much as possible. 
we follow the above mentioned two rules to make the  framework fast. our framework includes two components: road detection, 
road tracking. In road detection, we utilize the GraphCut algorithm [8] considering its efficiency and powerful segmentation perfor-
mance in 2-D color images. In road tracking, we outcomes a fast road tracking approach. There are two facts that deviates us to 
implement road tracking. First, although GraphCut is very efficient, it still cannot achieve a real-time performance when the UAV 
image resolution is high enough (as in our work), and performing road detection frame by frame is not time efficient. Second, road 
appearance usually does not abruptly change in video; therefore, road tracking can make full use of continuous spatial–temporal 
information of roads in videos and thus can quickly infer road areas from previous results. 
In road tracking, we track the road border structure between two consecutive frames. In a computer vision society, most developed 
tracking techniques, such as meanshift [9], particle filter [10], and optical flow [11], are appearance-based methods. They are for 
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pedestrian, where objects share common features. Although some contour-based methods, such as snake [12] or curve fitting [13] 
approaches, have shown promising road detection and tracking performance for applications to unmanned ground vehicles (UGV), 
they largely depend on the extracted road border (or markings) and vanishing points of the road, and might not be easily adaptable 
to UAV applications because the road boundary or markings are usually not salient enough to be detected due to the altitude of 
UAVs. In addition, these approaches are too computationally difficult to be used at real time. 
Because of the aforementioned difficulties in adapting existent tracking approaches to track a road in UAV videos, we develop a 
novel tracking technique based on homography alignment. Homography is a method of transformation that can be used to align one 
image plane to other when the moving camera is capturing images of a plane scene. Generally, the road region in our interest can be 
well approximated by a plane, and therefore, homography can be applicable to our  images. As mentioned, we aim at making our 
framework more efficient. We thus develop a fast homography estimation approach for road tracking, where the efficiency in 
homography estimation is attributed to three factors: (1) the FAST corner detector [14] is used to find key points in each road frame. 
(2) The Kanade–Lucas–Tomasi (KLT) tracker [15] is applied to establish a correspondence between the two sets of FAST corners in 
two consecutive frames. (3) A context-aware homography estimation approach is given where the corresponding FAST corners in 
the road neighbours are used with random sample consensus (RANSAC) estimator. 
Based on our homography-alignment scheme, if we know where the road area is in a previous frame, we can quickly locate the 
corresponding road region in current frame. Fig. 1 illustrates the idea of road tracking based on homography alignment, where the 
road region in (a) captured at time t is known a priori and the corresponding road region in frame t +1 is tracked through mapping 
the road of (a) to (b) based on the estimated homography. In a similar way, we can also track the corresponding road area in frame 
t+ 2 based on the located road region in frame t+ 1, and so on so forth.  
To get through this situation, we propose an online GraphCut scheme to detect the road area in the non-overlapping part. Since only 
a very small portion of the image is covered by non-overlapping part, the detection of road area in the non-overlapping part is very 
fast. Homography-alignment-based approach is much faster than GraphCut in location of the same road area. Therefore, the use of 
fast homography-based approach to track the road region in each frame can save considerable computation than mere use of 
GraphCut segmentation. 
The contributions of this paper are listed as follows: (1) We propose a real-time framework for the detection and tracking of a 
specific road in low- and mid-altitude UAV videos. To our best knowledge, this is the first work that has ever been proposed to 
introduce a tracking technique to speed up the localization of road in UAV videos. (2) Mixture of technologies involving a fast 
homography-alignment-based tracking and an online GraphCut detection in an effective way to locate road region in each frame. 
The fast homography-alignment approach, which is context aware, is given to track most part of the road region and the online 
GraphCut detection to detect the rest trivial road area in every frame. (3) To correct the tracking error caused by the drift problem in 
successive homography alignment, we give an online drift-correction scheme, where a comparison is first made between the color 
distribution of the tracked road area in current frame and the one obtained from the tracked road regions in some previous frames, 
and a decision can be made based on the comparison whether it is necessary to switch from tracking to detection. Apart from normal  
road detection and tracking, our technique is applicable to river, pipeline, coastline detection and tracking of UAV videos. 
 Section II reviews some most related works to our technique. Section III provides the introduction of the hardware configuration. 
Section IV describes in details on how to use an offline GraphCut to initialize the road region and how to adjust GraphCut 
adaptively for road detection in the middle of tracking and drift-error correction. The elaboration of proposed fast homography-
alignment-based road tracking technique is presented in Section V. Section VI presents bulk of experimental results in qualitative 
and quantitative ways, which gets concluded in Section VII. 

II. RELATED WORK 
Road detection and tracking in UAVs, particularly low- and mid-altitude UAVs is our focus in this paper, which can be used for 
autonomous navigation [4], [16], inspection [17], [18], traffic surveillance and monitoring [1], [20], [21]. A monocular color camera 
is equipped in this area, where UAVs usually are  flying  up to 500 m. The camera captures each vehicle clearly  on the ground and 
contains large spatial view on traffic areas. The other research  in UAV-based road detection uses  high-altitude UAVs [22]–[24], 
which identify road network, including many junctions and roundabouts from an image. High-resolution cameras are utilized in the 
greater altitude UAV applications, where cameras is kept 1000 m away from ground. The third type of road detection works use 
ego-vehicles with onboard cameras with driver assistance systems or UGVs autonomous navigation systems. A substantial amount 
of work [7], [25]–[29] have been done in this area. Since the focus of this paper is on road detection and tracking using low-/mid-
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altitude UAVs, we only give a review of the most related works in this area. 
In general, region color distributions or/and boundary structures are probably the most important information utilized for road 
detection. In [4], they proposed to learn road color distributions using Gaussian mixture models (GMMs) from given sample images, 
and then determine road pixels in each frame by checking the probabilities of pixels that fit the GMMs. Learning of both color and 
gradient information from a sample image is proposed in [17].  

 

 

 

 

 

 

 

 

Fig.1. 

Road tracking by homography , where the two frames (a) and (b) are not consecutive and they are selected to illustrate the clear gap. 
(a) Road detection result, where the contour of the road region is shown by green. (b) Result of road alignment by homography 
transformation. (c) Road median axis and the predicted region of interest (ROI). (d) Road detection in ROI and  tracking result. 
Gaussian and gamma distributions are used to represent information of color and gradient models. In [16], they learn structures from 
a sample image. Vanishing points are calculated by detecting pairs of line segments, and used to rectify the image in order to obtain 
rectified horizontal scans. Road boundaries are then identified through finding large intensity changes in the cross-section profile of  
horizontal scan. In [30], the clustering technique based on prior hue and texture information is used to classify each image pixel into 
target and background, and then boundary lines are fitted to refine the desired region. In [18], [19], a simple intensity thresholding 
technique is used to obtain initial road regions, followed by refinements of local line segment detections, where the assumption is 
that roads intensities are very different from neighborhood regions and roads can be approximated locally by linear line segments. 
Note that control algorithms of steering UAV in real time are also developed in [4], [16], which are not in the scope of this paper. 
Our objective is a fast real-time road tracking approach in UAV videos. Our future work will investigate how to use the tracked road 
information for parsing scenes in UAV videos. 

III. HARDWARE CONFIGURATION 
The UAV used in this paper is configured as shown in Fig. 2, which includes several components: batteries and chargers, octo-
copter, ground monitors and controllers, a camera and stabilization support. The octocopter is equipped with a global positioning 
system (GPS) and an altitude controller, which can fly up to 400 m within a 250 m radius. The fly can be autonomous by aid of 
programmed GPS waypoints or interactively by remote controls from users on the ground. The camera is carried at the bottom of 
the UAV, which is full HD in the progressive mode. The UAV is capable of tilting the camera to make it look straight down or with 
arbitrary tilted angles with regard to the ground. Some UAV images are shown which belongs to different days and at different 
places with varying altitudes. The road colors vary significantly, as well as the background 

IV. ROAD DETECTION USING GRAPHCUT 
First, we introduce a GraphCut-based road detection method, where the GMMs are used to model image color distributions, and 
structure tensors are employed to capture image edge features. To accelerate the performance, we perform road detection on 
downsampled images as in [7]. 
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A. Overview of Applying GraphCut to Road Detection 
With GraphCut, we view our road detection as a binary labeling problem as in [31] and [32]. An image I is formed by a set of pixels 
I={vxy: (x, y)∈Ω}. For a color image, vxy is viewed as an RGB vector, and for a gray image, it is an intensity value. We use (x, y) to 
denote the position of a pixel, and Ω⊂R2 is the image domain. Let U={uxy,(x, y)∈Ω} be a set of labels, uxy is assigned to the pixel at 
the position (x, y), which can be either 0 for nonroad or 1 for road defines the road areas where pixel labels are 1. 
where ξ is the set of 8-neighboring pixel pairs. We | · | to denote the absolute value, allowing us to capture color difference only 
along the segmentation boundary. · is the L2-norm factor. The parameter β is to control the smoothness and preciseness of the 
segmentation boundary, which is generally chosen to be as follows according to [31]: 
A weighted graph is then constructed, where the cost on each graph edge is defined based on the terms Ec and Es. The minimization 
of the Gibbs function becomes to find a cut with the minimum cost to partition the graph into two, which is solved by a min-
cut/max-flow algorithm [32]. An iterative minimization scheme in [31], [33] can further improve accuracy. 
Next, a detailed descriptions of the modeling of the color distributions using GMMs, image structure features capturing, and road 
detection using GraphCut is clarified. 

 

 

 

 

 

 

 

 

Fig. 4. Illustration of the Orchard–Bouman splitting procedure on 2-D data: In the first iteration, the whole data set (blue oval) is 
split into two (green and red ovals) after projecting data onto the direction of the eigenvector (blue line) that corresponds to the 
largest eigenvalue of the covariance of all data. If the largest eigenvalue of the covariance of the data within the green oval is larger 
than that of the red oval, the data within the green oval is split into two groups next. The data within the red oval is splitted next. 
This process is repeated again and again as to achieve the desired number of clusters. 
Road and nonroad pixels are first collected from sample images for learning road/nonroad color distributions. We select dozens of 
frames from UAV videos as the sample images, and scratch several strokes in each frame using green and red colors to specify road 
and nonroad pixels, respectively, as shown in Fig. 5(a). Two Gaussian mixture models GMM0 with K0  components and GMM1with 
K1components are used to represent the difference in road distributions. In this paper, we choose K0 as 3 and K1 as 5, which work 
well in our experiments. 
The next action is performed for creating  K0 and K1 components . This requires partitioning of  nonroad pixels into K0 clusters, and 
road pixels into K1 ones. There are a large number of methods for data clustering [34]. In this paper, the applications of  Orchard and 

Off-Line (Static) GMMs for Road/Nonroad 

Color Modelling 
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Boumand binary splitting algorithm [35] is employed. It performs statistical analysis on data to fast pro-duce solutions, where in 
each iteration, the cluster with larger variance is split into two until the desired number of clusters is reached. As it is found 
Empirically, the Orchard and Boumand approach is twice faster than Kmeans in creating GMMs. Fig. 4 gives an illustration of the 
Orchard and Boumand splitting process on 2-data. Algorithm 1 clarrifies the procedure of GMM creation. Based on the clustering 
results, a GMM (for either road or nonroad) can be represented by using K triplets GMM = 
{(μ1, Σ1, w1), (μ2, Σ2, w2), . . . , (μK , ΣK , wK)}, where μiand Σi are the mean color value and the 3 × 3 covariance matrix of a Gaussian 
component, respectively. The wi denotes the weight of each Gaussian component. We set wi as the number of pixels in the ith 
component over the total number of (road or nonroad) pixels 

Algorithm 1 The creation of a GMM 
Input: The number of componentsKand a set of road (ornonroad) pixels Γ. 
Output:KcomponentsC1, . . . , CK. 
Cm= Γ, m =1. Cmis a cluster with the largesteigenvalue. 
For (k= 2, . . . , K) 
For Cm, calculate the mean value μm, the covariance matrix Σm, the largest eigenvalue λm and the corre sponding eigenvector vm of 
Σm. 
Split Cm into two sets, Ck={c∈Cm:vmc≤vmμm}, and Cm= Cm − Ck. 
For (i= 1upto  k) 
calculate the covariance matrix Σi, the largest eigen value λi of Σi. 
If (λi> λm), m=i. 
The calculation of (8) is to make st symmetric with respect to pixels at (x, y) and (i, j), where κ is a global parameter. In the 
definition of (9), the term (i−x, j−y)S(x, y)(i−x, j−y)Tis approximately vxy − vij

2measuring the difference of color, and the other terms 
are used to give a pixel with large values of λ+ and λ+/λ− a big weight of being on the segmentation boundary, referred to [36]. is a 
small number introduced to avoid the case that λ+/λ− is too big. λ+(x, y), and λ−(x, y) represents the maximal and minimal eigenvalues 
of the structure tensor S at (x, y), seeing (10). With these definitions, the more similar two colors are (or the smaller λ+ and λ+/λ− are), 
the larger Es, and thus less likely to be the segmentation boundary. 
Fig. 5 illustrates Ec and Es visually. The segmentation result is to assign the label “1” to the pixels with low PGMM0 and high PGMM1 
values and the segmentation boundary goes along image structures. Morphology opera-tions, including erosion and dilation are 
performed to remove noises and fill holes. Contour analysis is applied to find large connected regions, which are the final road 
segmentation. we call it as the GraphCut detection approach based on static GMMs since the method relies on a static GMM model. 
Structure Tensor: To easily interpret the structure tensorS, the color image I is viewed as a differentiable function I(x, y) : Ω → R3. 
A 2 × 2 symmetric matrix defined in (10)with 3 × 3 window size is the structure tensor [36], which indicates local geometric 
structures of the image 

 

 

 

 

 

 

 

 

Fig. 6.  View of the drift problem in homography-alignment-based road tracking. (a) Initialized road region in the first frame. (b) to 
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(f) Mapping the road region of (a) to the 20th, 40th, 60th, 80th, and 100th frames, respectively, by the transformation derived from 
the accumulative homographies. The drift problem in road tracking is problematic with more accumulations. To correct the drift 
error in tracking, we automatically locate the frame where it is necessary to switch from homography-alignment-based tracking to 
GraphCut detection for road area segmentation. 
Image Downsampling: For an image with Npixels, theGraphCut algorithm has an average computational complexity of O(N logN), 
which is the bottleneck of our proposed system. To reduce the processing time, we perform road detection on a downsampled 
image, where the image resolution is reduced to a half by applying the bicubic interpolation algorithm. 

V. HOMOGRAPHY-ALIGNMENT-BASED ROAD TRACKING 
In this section, we give the details on how to achieve a fast road tracking based on homography alignment. We propose a 
rectification solution to  the drift problem caused by accumulation error in homography estimation, and give criteria on assessing 
tracking results. Fig. 7 sources the pipelines of road tracking. 

A. Fast Homography Estimation 
We treat the ground scene as a plane π in the view of UAVs. Fig. 8 gives an illustration of the captured scene. For a 3-D point Pπ , it 
has the coordinate p in It when we project Pπ on the image It 

 
 

 

 

 

 

 
 
Geometry homography transformation. in the camera coordinate system (O, x, y, z), and the coordinate p in It+1by projecting Pπon 
It+1in(O , x , y , z ). The two camera coordinate systems are transformed by the rotation R and translation T . Suppose that the plane π 
is with a normal vector n. matrix H is explained by using R, T , and n is able to match the image points of the plane πbetween the 
two images It and It+1 [37]. H is a 3 × 3 matrix with 8 freedoms: 3 for the rotation, 3 for the translation and 2 for the normal vector to 
the plane. Given M≥ 4 non-collinear corresponding point pairs (pi, pi) (i= 1, . . . M), H can be calculated. Using H, tracking of  road 
regions in the current frame (i.e., It+1) by geometrically mapping the road regions in previous frame (i.e., It) to It+1. Fig. 1(a) and (b) 
illustrates the  road region mapping  from a previous frame to current one based on homography alignment. 
To estimate H between two images, the most common way is firstly to detect sets of interest points in two frames, then find 
correspondence between the two sets of interest points through correlation-based matching, and finally estimate the homography 
matrix based on matched point pairs via a robust approach such as RANSAC [38]. Generally, the homography estimation in this 
way is computationally complex when the image resolution is as high as in our application, where the two computationally high 
parts are the point (or corner) matching and the RANSAC steps. 
Therefore, To speed up the procedure of establishing correspondence between two sets of corners, we first apply the FAST approach 
[14] to detect interest points in each frame. Compared with some other well-known features such as SIFT [39], SURF [40], Harris 
[41], can achieve the best balance between accuracy and efficiency for our purpose. Next, the application of KLT tracker is 
employed to the set of detected FAST corners in each frame so that we can get the predicted FAST corners in the following frame. 
In other words, the KLT tracker gives correspondence between the detected FAST corners and the predicted ones in the following 
frame through optical flow technique. Note that the procedure of establishing corner correspondence. In the conventional  way, the 
corners were detected in each frame and correlation is used to establish the matching between corners of two frames. It might work 
in most cases, where the two frames  perhaps not close to each other, but the correlation is higher computational complexity. In 
contrast, our application is a special case, where the two frames to be aligned is consecutive, and the motions of corners are small, 
which can just satisfy the condition of the KLT tracker. Fig. 9(a) and (b) gives point pairs that are found by using tracking and 
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matching techniques, respectively. The similar points movements in Fig. 9(a) and (b) indicates the effectiveness of the proposed 
technique. 
After finding the corresponding FAST corners of two consecutive frames through KLT, next, it is used to estimate the homography . 
. Since our purpose of using homography is to align the road region in two consecutive frames as accurately as possible, we propose 
a context-aware homography estimation approach, where only the corresponding FAST corners in the local neighborhood of road (a 
rectangular region which is obtained by expanding one quarter of the width of the road bounding box to left and right, respectively) 
are used within the RANSAC process. This is motivated by the observation that the homography that is estimated by RANSAC 
based on a local sampling of FAST-corner pairs can more accurately align the two images at this local region than the homography 
that is estimated by the common RANSAC . We illustrate the context-aware homography estimation scheme in Fig. 10 and show its 
advantage over the common RANSAC. 

B. Road Tracking 
The road area is tracked in a current frame by transforming the road region of a previous frame with the homography matrix H. 
Suppose the road contour in the previous frame is Ct. The road contoured track in the current frame takes the shape of  Ct

H
+1=HCt. 

The transformed contour achieves the road tracking in the current frame. Fig. 1(b) shows an example. On comparing previous 
frame, there are incoming regions with incoming road areas in a current frame. The incoming road area Rt

in
+1 need to be extracted 

and then combined 
As UAVs provide  fly forward facility, the incoming road appears near by the top of the aligned road. We thus define the ROI 
centered by the top point of the median axis of Ct

H
+1. By performing distance map calculation, skeleton, and noise removing we 

obtain median axes. After application of that, the algorithm in previously viewed Section IV is applied in ROI. 
1) Correcting Drift Error Occuring while Tracking: As shown in Fig. 6, the drift errors tend to be very small in the first several 

dozen frames, and become larger with more incoming frames. The drift errors arise due to two factors: the first one is the 
inaccuracy in homography estimation. The second one is the ac-cumulation of round errors even when homography estimation 
is correct, because the transformation between two consecutive frames is slight and thus, the calculation is sensitive to round 
error. Large drift errors could arise with the accumulation of very small ones The large errors cause the aligned road area drifts 
far from the real road location. We propose a solution to deal with it. For the drift error caused by round error, considering that 
the drift errors are very small in the initial several dozen frames, the road regions in the first 25 frames are still tracked based on 
homography alignment between two consecutive frames. But for the subsequent frames, we do the road tracking by estimating 
the transformation between the current frame and the last tenth frame instead of the previous one, as shown in Figs. 6 and 17. 
The reason is that, RANSAC uses a small fixed threshold to control the inliers for the optimal transformation estimation. If the 
transformation between  consecutive frames seems  too small, RANSAC requires false inliers for transformation estimation. 
Because of this reason we estimate the transformation between two frames that are z frames apart. We can learn the “z” based 
on the median magnitude of the motion vectors shown in Fig. 9. For our aspect, z is set to 10. 

In addition, to avoid large drift error, each tracking result is evaluated according to a criteria given in the following, so that if the 
tracking is unsuccessful, online GraphCut detection is applied instead. Specifically, we propose to compare the corresponding RGB 
histogram of the current tracking result with an average RGB histogram obtained from the tracking results of the last 10 frames. If 
the difference is noted as above a threshold,  the tracking result drifts  far away from the real road area. The histograms can built 
with  bins for each color channel. In each bin, the pixel number percentage  in the bin over the total number of pixels is estimated . 
Moreover, large accumulative error in tracking may also cause obviously zigzag contours, as shown in Fig. 18. We check each road 
contour. If the change of contour length is above a threshold, tracking results are treated as unsuccessful. 

VI. EXPERIMENTAL RESULTS 
Experiments are mainly conducted on image sequences ac-quired using our UAV that flew in different sessions near our center in 
Australia. Image sequences downloaded online are also used for  evaluation on different scenarios. In the test data set, there are 
2780 images from six videos of different resolutions, of type including 1280 × 720, 1244 × 748, 1024 × 576, and 848 × 480. 
Owing to  limitation of used UAV flight, we are abide of  capture videos of unpaved roads. Paved Roads are utilized in our 
experiments . Inappropriate conditions such as slow/fast UAV movements, low/high-altitude flying, existence of a lot of shadows, 
and large variations on image scenes are included in the data set. The colors and shapes of road are different from each other.  
In this paper, quantitative evaluations are provided by com-paring the results with ground truth pixel wisely using two 
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measurements: 1) precision Q=T P/(T P+F P), which is the percentage of correctly classified road pixels over the total detected road 
pixels; and 2) error rate ER= (F P+F N )/(T P + F N ), which is the percentage of wrong classified image pixels over the ground-
truth road area. T P , F P , and F N , respectively, are true positive, false positive, and false negative. is combined with the online 
GraphCut detection in ROI as the tracking result and then the tracking result is pixel wisely com-pared with the ground truth. From 
the result in Table II, we can see that our homography-alignment-based technique is much faster and more accurate. The reason is 
the introduction of the KLT tracker and context-aware RANSAC. The further experiment on the context-aware homography 
estimation scheme is given in Figs. 10 and 11. We can see that the alignment of road regions based on our context-aware 
homography-alignment-based tracking is more accurate than the one obtained by the traditional homography estimation. The reason 
can be due to the fact that some objects such as bushes, tress, or highland (hills) play a nontrivial role in homography estimation 
through the common RANSAC. However, these high objects cannot be treated as lying in the same plane with road areas, and are 
not desirable for the estimation of an optimal homography to accurately align road regions only. In addition, our context-aware 
homography estimation scheme is much faster than the common RANSAC one, and the computational time is less than 10%. 
We also experiment different features for homography estimation, including SIFT, Harris, and SURF. Amongst them, SURF has 
been widely used for an accurate homography estimation. It takes moreover 0.142 s per frame for the detection of SURF features. 
FAST has the best overall performance (as studied in [14]), where the FAST feature detection only takes 0.008 s per frame. 
Fig. 17 shows homography-alignment road tracking on frames with 10 intervals in-between, in comparison with Fig. 6. With the 
accepted level of interval, homography estimation becomes more speedest to calculation (round) error. Thus, road tracking can be  
successfully runned on more frames with zero drift-error correction. For the continuous frame-based estimation, road tracking often 
jumps after 10–30 frames, and for the interval-based estimation, road tracking fails after 100–300 frames. 

A.  Road Detection and Tracking 
The proposed technique of road detection and tracking is experimented as a whole in this section. The technique is tested on UAV 
videos acquired at different altitudes and fly speeds (For our UAV, we fly with absolute attitudes of 130–170 m and ground speeds 
of 5–10 m/s).  More sequences can be found from the supplementary file. Accurate estimates of  road areas are provided in our 
experimental results. The switch between road detection and tracking only happens when there are too much changes of color 
distributions or/and contour lengths of tracked roads, and it can successfully solve the drift and zigzag problems. 
Table III lists the running time of previous approaches on road detection and tracking. The work done by Frew et al. [4] is 
implemented in this concept using static GMM on original video frames with the 848 × 480 resolution. The other statistics are 
obtained from the papers. Our proposed approach challenges fastest road detection and tracking. We test 2760 frames in total with 
the resolution of 1046 × 595 on average. Tit is found that the mean detection time duration is 0.283s and tracking time is 0.028 s per 
frame. Road detection is required in 16 frames, including the initial detection and switching from unsuccessful tracking. The 
average running time of presented  approach  is 0.029 s per frame 

VII. CONCLUSION 
In this paper, a novel approach for road detection and tracking in UAV videos has been proposed. We utilize the static GraphCut 
then track road areas in subsequent frames by combining a fast context-aware homography-alignment road tracker and an online 
GraphCut approach for road detection in incoming ROIs. Efficiency and effectiveness of the proposed tracking technique are 
demonstrated in our experiments. 
Based on our experiments, we notice that drift error and zigzag contour problems more often happen in UAVs at low altitudes and 
in high speeds. The reason is that (1) there are more high objects that are not in the same road plane when UAVs flying at low 
altitude Results with high Q and low ER are desired. The ground truth road areas are manually specified on 400 images evenly 
sampled from our test videos. All the experiments are conducted using C++ implementation on Intel i7-2600K 3. 
There are some parameters introduced in our method. The values lotted in our experiments are listed as follows. The λ in (1) is to be 
50 as in [36]. The κ in (8) is chosen to be EP(s(vxy, vij) +s(vij, vxy)). The K0and K1are set to be 5 and 3 for non-road and road GMMs. 
The size occupied by downsampled version  in GraphCut detection is the half of parental images. The interval corresponding of 
updating GMM is 40 frames. The size of the incoming ROI is w×h with h= 60 and w= 6d, where d is the average distance of points 
on the median axis to the contour  image downsampled to a half resolution and then the final result is obtained by scaling the 
intermediate result to the full-size images. 
The first experiment is to evaluate GMM modeling, structure tensor, and GraphCut. We compare their performances to road 
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detection in terms of average error rates ER, precision Q and times T . The visual comparisons are given in Fig. 12. Note that the 
term of GMM based detection in Table I comes from [4] that detects road based on the probability map of (6). Since our road 
tracking is highly dependent on the detection result, in this stage the accuracy of detection is more important than efficiency. 
The second experiment is fully relies on GMM components. Different numbers for K0 and K1 are tested in road detection. 
Mathematical details of average detection error rates and timings (i.e., ER and T ) is shown for comparison. The result indicates that 
K0= 5 and K1= 3 achieve the best balance between efficiency and accuracy. 
Fig. 14 compares the performances of the static GraphCut and online GraphCut in road detection. It can be seen that due 
to flight, colors of road, and background scene change a lot. As the dynamic GMM adaptively updates the model using new road 
and non-road pixels, it ensures more robust performance. Road detection on the original and half-sized is evaluated in Fig. 15. It is 
observed schematically that reduction of image size does not change much accuracy of road detection and does speed-up road 
detection.  

A.  Road Tracking 
Road tracking is evaluated on video sequences when the detected roads are given. The first experiment is on the homography-
alignment-based tracking schemes. We compare our with the traditional mechanism using FAST detection in images, correlation-
based matching and homography estimation based on all matched point pairs. The corresponding times T, precisions Q and average 
error rates ER are compared in Table II, as well as the time for each step. 

 

 

 

 

 

 

the condition of KLT tracker (the linearization of the optimization equation through Taylor expansion at very local region) is not 
satisfied when UAVs fly very fast. The proposed context-ware homography estimation solves the problem from (1), but it is still 
difficult for urban areas with high buildings along road sides. Switching from road tracking to detection can address the problem 
from (2), but it would be much slower since detection is more computationally complex than tracking.  More intelligent methods 
similar to key frame-based [42] or incremental structure-from-motion [43] can be investigated 

B. Performance Comparison of Road Detection and Tracking Techniques 
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