International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

Some Enestrom- Kakeya Type Results

M. H. Gulzar
Post Graduate, Department of Mathematics, University of Kashmir, Srinagar 190006

Abstract: In this paper we prove some Enestrom-Kakeya type results on the location of zeros of a polynomial.
 Mathematics Subject Classification (2010): 30C10, $30 C 15$.
 KeyWords and Phrases: Bound, Coefficient, Polynomial, Zeros.

I. INTRODUCTION

Enestrom and Kakeya proved independently a very important result on the location of zeros of a polynomial with real positive coefficients. It is known as Enestrom -Kakeya theorem and is stated as follows[12,3]:
A. Theorem A

Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that

$$
a_{n} \geq a_{n-1} \geq \ldots \ldots \geq a_{1} \geq a_{0}>0
$$

Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq 1$.

II. MAIN RESULTS

In this paper we change the condition on the coefficients of the polynomial and prove the following results:
A. Theoreml

Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with real positive coefficients satisfying

$$
a_{n} \leq a_{n-1} \geq a_{n-2} \leq a_{n-3} \geq \ldots \ldots \leq a_{1} \geq a_{0}
$$

if n is odd and

$$
a_{n} \leq a_{n-1} \geq a_{n-2} \leq a_{n-3} \geq \ldots \ldots \leq a_{1} \geq a_{0}
$$

if n is even.
Then for odd n , all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{2(L-M)-a_{n}}{a_{n}}
$$

with $\quad L-M>a_{n}$, where

$$
\begin{aligned}
L & =a_{n-1}+a_{n-3}+\ldots \ldots+a_{0} \\
M & =a_{n-2}+a_{n-4}+\ldots \ldots+a_{1}
\end{aligned}
$$

And for even n , , all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{2\left(L^{\prime}-M^{\prime}\right)-a_{n}}{a_{n}}
$$

where

$$
\begin{aligned}
& L^{\prime}=a_{n-1}+a_{n-3}+\ldots \ldots+a_{1} \\
& M^{\prime}=a_{n-2}+a_{n-4}+\ldots \ldots+a_{2}
\end{aligned}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

with $L^{\prime}-M^{\prime}>a_{n}$.

1) Remark 1: If we consider the polynomial

$$
P(z)=z^{5}+3 z^{4}+3 z^{3}+4 z^{2}+4 z+5,
$$

then Enestrom-Kakeya theorem is not applicable.The classical Cauchy's theorem gives the bound for all the zeros of $\mathrm{P}(\mathrm{z})$ as 6 , whereas by Theorem 1 , the bound is easily seen to be $3<6$.
If the coefficients of the polynomial $\mathrm{P}(\mathrm{z})$ are complex, we prove the following result:
B. Theorem 2

Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a complex polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}, j=0,1,2, \ldots \ldots, n$ and $\alpha_{j}>0, \forall j$ such that

$$
\alpha_{n} \leq \alpha_{n-1} \geq \alpha_{n-2} \leq \alpha_{n-3} \geq \ldots \ldots \geq \alpha_{1} \leq \alpha_{0}
$$

if n is odd and

$$
\alpha_{n} \leq \alpha_{n-1} \geq \alpha_{n-2} \leq \alpha_{n-3} \geq \ldots \ldots \leq \alpha_{1} \geq \alpha_{0}
$$

if n is even.
Then for odd n , all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{2(L-M)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|}
$$

where

$$
\begin{aligned}
L & =\alpha_{n-1}+\alpha_{n-3}+\ldots \ldots+\alpha_{0} \\
M & =\alpha_{n-2}+\alpha_{n-4}+\ldots \ldots+\alpha_{1}
\end{aligned}
$$

with $\quad 2(L-M)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|>\left|a_{n}\right|$.
And for even n , all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{2\left(L^{\prime}-M^{\prime}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|}
$$

where

$$
\begin{gathered}
L^{\prime}=\alpha_{n-1}+\alpha_{n-3}+\ldots . .+\alpha_{1} \\
M^{\prime}=\alpha_{n-2}+\alpha_{n-4}+\ldots \ldots+\alpha_{2}
\end{gathered}
$$

with $\quad 2\left(L^{\prime}-M^{\prime}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|>\left|a_{n}\right|$.

1) Remark 2: Theorem 2 is a generalization of Theorem land reduces to it by taking $\beta_{j}=0, \forall j$.

Applying Theorem 2 to the polynomial $-\mathrm{iP}(\mathrm{z})$, we get the following result:
a) Corollary 1: Let $\quad P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a complex polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}$,

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$\operatorname{Im}\left(a_{j}\right)=\beta_{j}, j=0,1,2, \ldots \ldots, n$ and $\beta_{j}>0, \forall j$ such that

$$
\beta_{n} \leq \beta_{n-1} \geq \beta_{n-2} \leq \beta_{n-3} \geq \ldots \ldots \leq \beta_{1} \geq \beta_{0}
$$

if n is odd and

$$
\beta_{n} \leq \beta_{n-1} \geq \beta_{n-2} \leq \beta_{n-3} \geq \ldots \ldots \leq \beta_{1} \geq \beta_{0}
$$

if n is even.
Then for odd n , all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{2\left(L_{1}-M_{1}\right)-\beta_{n}+2 \sum_{j=0}^{n}\left|\alpha_{j}\right|}{\left|a_{n}\right|}
$$

where

$$
\begin{aligned}
L & =\beta_{n-1}+\beta_{n-3}+\ldots \ldots+\beta_{0}, \\
M & =\beta_{n-2}+\beta_{n-4}+\ldots \ldots+\beta_{1}
\end{aligned}
$$

with $\quad 2\left(L_{1}-M_{1}\right)-\beta_{n}+2 \sum_{j=0}^{n}\left|\alpha_{j}\right|>\left|a_{n}\right|$.
And for even n , all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{2\left(L_{1}^{\prime}-M_{1}^{\prime}\right)-\beta_{n}+2 \sum_{j=0}^{n}\left|\alpha_{j}\right|}{\left|a_{n}\right|}
$$

where

$$
\begin{aligned}
& L_{1}^{\prime}=\beta_{n-1}+\beta_{n-3}+\ldots \ldots+\beta_{1} \\
& M_{1}^{\prime}=\beta_{n-2}+\beta_{n-4}+\ldots \ldots+\beta_{2}
\end{aligned}
$$

with $\quad 2\left(L_{1}^{\prime}-M_{1}^{\prime}\right)-\beta_{n}+2 \sum_{j=0}^{n}\left|\alpha_{j}\right|>\left|a_{n}\right|$.
Next we prove the following result:

C. Theorem 3

Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a complex polynomial of degree n such that for some real α, β,

$$
\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1,2, \ldots \ldots, n
$$

and

$$
\left|a_{n}\right| \leq\left|a_{n-1}\right| \geq\left|a_{n-2}\right| \leq\left|a_{n-3}\right| \geq \ldots \ldots . \leq\left|a_{1}\right| \geq\left|a_{0}\right|
$$

if n is odd and

$$
\left|a_{n}\right| \leq\left|a_{n-1}\right| \geq\left|a_{n-2}\right| \leq\left|a_{n-3}\right| \geq \ldots \ldots \leq\left|a_{1}\right| \geq\left|a_{0}\right|
$$

if n is even.
Then for odd n , all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|(\sin \alpha-\cos \alpha)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|a_{n-3}\right|+\ldots \ldots+\left|a_{2}\right|\right)\right.
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
 $$
-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots \ldots+\left|a_{1}\right|\right)+(\cos \alpha+\sin \alpha+1)\left|a_{0}\right|
$$

and for even n , all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
\begin{aligned}
|z| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|\right. & (\sin \alpha-\cos \alpha)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|a_{n-3}\right|+\ldots \ldots+\left|a_{1}\right|\right) \\
& \quad-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots \ldots+\left|a_{2}\right|\right)+(\sin \alpha-\cos \alpha+1)\left|a_{0}\right|
\end{aligned}
$$

1) Remark 3: If we take $\alpha=0, \beta=0, a_{j}>0, \forall j$,Theorem 3 reduces to Theorem 1.

III. LEMMA

For the proofs of the above results, we need the following lemma:

A. Lemma 1

For any two complex numbers b_{1}, b_{2} such that $\left|b_{1}\right| \geq\left|b_{2}\right|$ and $\left|\arg b_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=1,2$
for some real α, β,

$$
\left|b_{1}-b_{2}\right| \leq\left(\left|b_{1}\right|-\left|b_{2}\right|\right) \cos \alpha+\left(\left|b_{1}\right|+\left|b_{2}\right|\right) \sin \alpha .
$$

The above lemma is due to Govil and Rahman [1].

IV. PROOFS OF THEOREMS

A. Proof of Theorem 2

Consider the polynomial

$$
\begin{aligned}
F(z)= & (1-z) P(z) \\
= & (1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}\right) \\
= & -a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots \ldots+\left(a_{\lambda+1}-a_{\lambda}\right) z^{\lambda+1}+\left(a_{\lambda}-a_{\lambda-1}\right) z^{\lambda} \\
& \quad+\ldots . .+\left(a_{1}-a_{0}\right) z+a_{0} \\
= & -a_{n} z^{n+1}+\left(\alpha_{n}-\alpha_{n-1}\right) z^{n}+\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1}+\ldots \ldots+\left(\alpha_{1}-\alpha_{0}\right) z+\alpha_{0} \\
& \quad+i\left\{\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\left(\beta_{n-1}-\beta_{n-2}\right) z^{n-1}+\ldots \ldots+\left(\beta_{1}-\beta_{0}\right) z+\beta_{0}\right\} .
\end{aligned}
$$

For $|z|>1$ so that $\frac{1}{|z|^{j}}<1, j=1,2, \ldots \ldots, n$, and odd n , we have, by using the hypothesis

$$
\begin{aligned}
& |F(z)| \geq\left|a_{n} \| z\right|^{n+1}-\left[\left|\alpha_{n}-\alpha_{n-1}\left\|\left.z\right|^{n}+\left|\alpha_{n-1}-\alpha_{n-2}\right||z|^{n-1}+\ldots \ldots+\left|\alpha_{1}-\alpha_{0} \| z\right|+\left|\alpha_{0}\right|\right.\right.\right. \\
& \left.\left.+\left|\beta_{n}-\beta_{n-1}\right||z|^{n}+\left|\beta_{n-1}-\beta_{n-2}\right|\right)|z|^{n-1}+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right||z|+\left|\beta_{0}\right|\right] \\
& =|z|^{n}\left[\left|a_{n} \| z\right|-\left\{\left|\alpha_{n}-\alpha_{n-1}\right|+\frac{\left|\alpha_{n-1}-\alpha_{n-2}\right|}{|z|}+\frac{\left|\alpha_{n-2}-\alpha_{n-3}\right|}{|z|^{2}}+\ldots \ldots+\frac{\left|\alpha_{1}-\alpha_{0}\right|}{|z|^{n-1}}+\frac{\left|\alpha_{0}\right|}{|z|^{n}}\right.\right. \\
& \left.\left.+\left|\beta_{n}-\beta_{n-1}\right|+\frac{\left|\beta_{n-1}-\beta_{n-2}\right|}{|z|}+\ldots \ldots+\frac{\left|\beta_{1}-\beta_{0}\right|}{|z|^{n-1}}+\frac{\left|\beta_{0}\right|}{|z|^{n}}\right\}\right] \\
& >|z|^{n}\left[\left|a_{n}\right||z|-\left\{\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\alpha_{n-1}-\alpha_{n-2}\right|+\left|\alpha_{n-2}-\alpha_{n-3}\right|+\ldots \ldots .+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|\right.\right.
\end{aligned}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$$
\begin{aligned}
& \left.\left.\quad+\left|\beta_{n}-\beta_{n-1}\right|+\left|\beta_{n-1}-\beta_{n-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|\right\}\right] \\
& \geq|z|^{n}\left[\left|a_{n} \||z|-\left\{\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\alpha_{n-1}-\alpha_{n-2}\right|+\left|\alpha_{n-2}-\alpha_{n-3}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|\right.\right.\right. \\
& \left.\left.\quad \quad+\left|\beta_{n}\right|+\left|\beta_{n-1}\right|+\left|\beta_{n-1}\right|+\left|\beta_{n-2}\right|+\ldots \ldots+\left|\beta_{1}\right|+\left|\beta_{0}\right|+\left|\beta_{0}\right|\right\}\right] \\
& \geq|z|^{n}\left[\left|a_{n}\right||z|-\left\{\alpha_{n-1}-\alpha_{n}+\alpha_{n-1}-\alpha_{n-2}+\alpha_{n-3}-\alpha_{n-2}+\ldots \ldots+\alpha_{2}-\alpha_{1}+\alpha_{0}-\alpha_{1}\right.\right. \\
& \left.\left.\quad+\alpha_{0}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right\}\right]
\end{aligned} \quad \begin{aligned}
& =|z|^{n}\left[\left|a_{n} \| z\right|-\left\{2\left(\alpha_{n-1}+\alpha_{n-3}+\ldots \ldots+\alpha_{0}\right)-2\left(\alpha_{n-2}+\alpha_{n-4}+\ldots \ldots \alpha_{1}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right\}\right] \\
& =|z|^{n}\left[\left|a_{n} \||z|-\left\{2 L-2 M-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right\}\right]\right. \\
& >0
\end{aligned}
$$

if

$$
|z|>\frac{2 L-2 M-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|}
$$

provided $2 L-2 M-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|>\left|a_{n}\right|$.
This shows that those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is greater than 1 lie in

$$
|z| \leq \frac{2(L-M)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|}
$$

Since $2 L-2 M-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|>\left|a_{n}\right|$, it follows that those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is less than or equal to 1 already lie in

$$
|z| \leq \frac{2(L-M)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|}
$$

Since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, it follows that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{2(L-M)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|}
$$

in case n is odd.
If n is even, then for $|z|>1$ so that $\frac{1}{|z|^{j}}<1, j=1,2, \ldots \ldots, n$, we have, as in the above case, by using the hypothesis

$$
|F(z)| \geq|z|^{n}\left[\left|a_{n}\right||z|-\left\{\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\alpha_{n-1}-\alpha_{n-2}\right|+\left|\alpha_{n-2}-\alpha_{n-3}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|\right.\right.
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

$$
\begin{aligned}
& \left.\left.\quad+\left|\beta_{n}\right|+\left|\beta_{n-1}\right|+\left|\beta_{n-1}\right|+\left|\beta_{n-2}\right|+\ldots \ldots+\left|\beta_{1}\right|+\left|\beta_{0}\right|+\left|\beta_{0}\right|\right\}\right] \\
& \geq|z|^{n}\left[\left|a_{n}\right| z z \mid-\left\{\alpha_{n-1}-\alpha_{n}+\alpha_{n-1}-\alpha_{n-2}+\alpha_{n-3}-\alpha_{n-2} \ldots \ldots .+\alpha_{1}-\alpha_{2}+\alpha_{1}-\alpha_{0}+\alpha_{0}\right.\right. \\
& \left.\left.\quad \quad+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right\}\right] \\
& =|z|^{n}\left[\left|a_{n}\right||z|-\left\{2\left(\alpha_{n-1}+\alpha_{n-3}+\ldots \ldots+\alpha_{1}\right)-2\left(\alpha_{n-2}+\alpha_{n-4}+\ldots \ldots .+\alpha_{2}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right\}\right] \\
& =|z|^{n}\left[\left|a_{n}\right||z|-\left\{2\left(L^{\prime}-M^{\prime}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right\}\right] \\
& >0
\end{aligned}
$$

if

$$
|z|>\frac{2\left(L^{\prime}-M^{\prime}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|}
$$

provided $2\left(L^{\prime}-M^{\prime}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|>\left|a_{n}\right|$.
This shows that those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is greater than 1 lie in

$$
|z| \leq \frac{2\left(L^{\prime}-M^{\prime}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|} .
$$

Since $2\left(L^{\prime}-M^{\prime}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|>\left|a_{n}\right|$, it follows that those zeros of $\mathrm{F}(z)$ whose modulus is less than or equal to 1 already lie in

$$
|z| \leq \frac{2\left(L^{\prime}-M^{\prime}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|} .
$$

Since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, it follows that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in

$$
|z| \leq \frac{2\left(L^{\prime}-M^{\prime}\right)-\alpha_{n}+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|}
$$

in case n is even.
That completes the proof of Theorem 2.
B. Proof of Theorem 3

Consider the polynomial

$$
\begin{aligned}
F(z) & =(1-z) P(z) \\
& =-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\ldots \ldots+\left(a_{1}-a_{0}\right) z+a_{0}
\end{aligned}
$$

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

For $|z|>1$ so that $\frac{1}{|z|^{j}}<1, j=1,2, \ldots \ldots, n$, and odd n , we have, as seen earlier, by using the hypothesis

$$
\begin{aligned}
& |F(z)| \geq|z|^{n}\left[\left|a_{n}\right||z|-\left\{\left|a_{n}-a_{n-1}\right|+\left|a_{n-1}-a_{n-2}\right|+\left|a_{n-2}-a_{n-3}\right|+\ldots \ldots+\left|a_{1}-a_{0}\right|+\left|a_{0}\right|\right.\right. \\
& \geq|z|^{n}\left[\left|a_{n} \| z\right|-\left\{\left(\left|a_{n-1}\right|-\left|a_{n}\right|\right) \cos \alpha+\left(\left|a_{n-1}\right|+\left|a_{n}\right|\right) \sin \alpha+\left(\left|a_{n-1}\right|-\left|a_{n-2}\right|\right) \cos \alpha\right.\right. \\
& \\
& \quad+\left(\left|a_{n-1}\right|+\left|a_{n-2}\right|\right) \sin \alpha+\left(\left|a_{n-3}\right|-\left|a_{n-2}\right|\right) \cos \alpha+\left(\left|a_{n-3}\right|+\left|a_{n-2}\right|\right) \sin \alpha \\
& \quad+\ldots \ldots+\left(\left|a_{2}\right|-\left|a_{1}\right|\right) \cos \alpha+\left(\left|a_{2}\right|+\left|a_{1}\right|\right) \sin \alpha+\left(\left|a_{0}\right|-\left|a_{1}\right|\right) \cos \alpha \\
& \left.\left.\quad+\left(\left|a_{0}\right|+\left|a_{1}\right|\right) \sin \alpha+\left|a_{0}\right|\right\}\right] \\
& =|z|^{n}\left[\left|a_{n}\right||z|-\left\{\left|a_{n}\right| \sin \alpha-\cos \alpha\right)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|a_{n-3}\right|+\ldots \ldots+\left|a_{2}\right|\right)\right. \\
& \left.\left.\quad-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots . .+\left|a_{1}\right|\right)+(\cos \alpha+\sin \alpha+1)\left|a_{0}\right|\right\}\right]
\end{aligned}
$$

$$
>0
$$

if

$$
\begin{aligned}
& |z|>\frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|(\sin \alpha-\cos \alpha)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|a_{n-3}\right|+\ldots \ldots+\left|a_{2}\right|\right)\right. \\
& \left.\left.\quad \quad-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots \ldots+\left|a_{1}\right|\right)+(\cos \alpha+\sin \alpha+1)\left|a_{0}\right|\right\}\right]
\end{aligned}
$$

This shows that those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is greater than 1 lie in

$$
\begin{aligned}
&|z| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|(\sin \alpha-\cos \alpha)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|a_{n-3}\right|+\ldots \ldots+\left|a_{2}\right|\right)\right. \\
&\left.\left.\quad-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots \ldots+\left|a_{1}\right|\right)+(\cos \alpha+\sin \alpha+1)\left|a_{0}\right|\right\}\right] .
\end{aligned}
$$

Since those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is less than or equal to 1 already satisfy the above inequality, it follows that all the zeros of $\mathrm{F}(\mathrm{z})$ and hence $\mathrm{P}(\mathrm{z})$ lie in

$$
\begin{aligned}
&|z| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|(\sin \alpha-\cos \alpha)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|a_{n-3}\right|+\ldots \ldots+\left|a_{2}\right|\right)\right. \\
&\left.\left.\quad-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots \ldots+\left|a_{1}\right|\right)+(\cos \alpha+\sin \alpha+1)\left|a_{0}\right|\right\}\right] .
\end{aligned}
$$

in case n is odd.
If n is even, we have as in the above case, for $|z|>1$,

$$
\begin{aligned}
& |F(z)| \geq|z|^{n}\left[\left|a_{n}\right||z|-\left\{\left(\left|a_{n-1}\right|-\mid a_{n}\right) \cos \alpha+\left(\left|a_{n-1}\right|+\left|a_{n}\right|\right) \sin \alpha+\left(\left|a_{n-1}\right|-\left|a_{n-2}\right|\right) \cos \alpha\right.\right. \\
& \quad+\left(\left|a_{n-1}\right|+\left|a_{n-2}\right|\right) \sin \alpha+\left(\left|a_{n-3}\right|-\left|a_{n-2}\right|\right) \cos \alpha+\left(\left|a_{n-3}\right|+\left|a_{n-2}\right|\right) \sin \alpha \\
& \quad+\ldots \ldots+\left(\left|a_{1}\right|-\left|a_{2}\right|\right) \cos \alpha+\left(\left|a_{1}\right|+\left|a_{2}\right|\right) \sin \alpha+\left(\left|a_{1}\right|-\left|a_{0}\right|\right) \cos \alpha \\
& \left.\left.\quad+\left(\left|a_{1}\right|+\left|a_{0}\right|\right) \sin \alpha+\left|a_{0}\right|\right\}\right] \\
& =|z|^{n}\left[\left|a_{n}\right||z|\right. \\
& \quad-\left\{\left|a_{n}\right| \sin \alpha-\cos \alpha\right)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|a_{n-3}\right|+\ldots \ldots+\left|a_{1}\right|\right) \\
& \left.\left.\quad-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots \ldots+\left|a_{2}\right|\right)+(\sin \alpha-\cos \alpha+1)\left|a_{0}\right|\right\}\right]
\end{aligned}
$$

$$
>0
$$

if

International Journal for Research in Applied Science \& Engineering
 Technology (IJRASET)

$$
\begin{aligned}
& |z|>\frac{1}{\left|a_{n}\right|}\left[\left|\alpha_{n}\right|(\sin \alpha-\cos \alpha)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|v_{n-3}\right|+\ldots \ldots+\left|a_{1}\right|\right)\right. \\
& \left.\left.\quad \quad-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots \ldots+\left|a_{2}\right|\right)+(\sin \alpha-\cos \alpha+1)\left|a_{0}\right|\right\}\right] .
\end{aligned}
$$

This shows that those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is greater than 1 lie in

$$
\begin{aligned}
&|z| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|(\sin \alpha-\cos \alpha)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|v_{n-3}\right|+\ldots \ldots+\left|a_{1}\right|\right)\right. \\
&\left.\left.\quad-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots \ldots+\left|a_{2}\right|\right)+(\sin \alpha-\cos \alpha+1)\left|a_{0}\right|\right\}\right]
\end{aligned}
$$

Since those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is less than or equal to 1 already satisfy the above inequality, it follows that all the zeros of $\mathrm{F}(\mathrm{z})$ and hence $\mathrm{P}(\mathrm{z})$ lie in

$$
\begin{aligned}
|z| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n}\right|\right. & (\sin \alpha-\cos \alpha)+2(\cos \alpha+\sin \alpha)\left(\left|a_{n-1}\right|+\left|v_{n-3}\right|+\ldots \ldots+\left|a_{1}\right|\right) \\
& \left.\left.\quad-2(\cos \alpha-\sin \alpha)\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|+\ldots \ldots+\left|a_{2}\right|\right)+(\sin \alpha-\cos \alpha+1)\left|a_{0}\right|\right\}\right] .
\end{aligned}
$$

in case n is even.
That completes the proof of Theorem 3.

REFERENCES

[1] N. K. Govil and Q. I. Rahman, On Enestrom-Kakeya Theorem, Tohoku J. Math. 2 (1968), 126-136.
[2] M. Marden, Geometry of Polynomials, Math. Surveys No. 3, Amer. Math.Soc.(1966).
[3] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York (2002).

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

