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Abstract— This paper explores the thermal radiation effect in the two-dimensional and magnetohydrodynamic (MHD) flow 
of an incompressible non-Newtonian fluid in a convergent/divergent channel. The fluid is considered to be 
thermodynamically second grade. The mathematical formulation involves the conservation of laws of mass, linear 
momentum and energy with Rosseland’s approximation. The resulting nonlinear analysis is computed with the 
implementation of differential transformation method (DTM). Solutions for velocity and temperature are derived. 
Computations for the skin friction coefficient and local Nusselt number are also established. Both cases of convergent and 
divergent channel are analyzed. Comparison of present results with the previous relevant approximate and numerical 
solutions is shown. It is observed that the temperature is decreasing function of thermal radiation.
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Nomenclature

A1, 
A2

the first two 
Rivilin Erickson 
tensors

Re Reynolds number

B total magnetic 
field 

T1 Cauchy stress tensor

B0 an applied 
magnetic field 

T temperature

b an induced 
magnetic field

u radial velocity 

fc skin friction 
coefficient

V flow velocity vector

cp specific heat at 
constant pressure 

y analytic function 

De Deborah number Y transformed 
function

Ec Eckert number Greek

e internal energy α1, α2 material constants

F dimensionless 
parameter

α angle between two 
walls

G transformed 
function

η similarity variable

H Hartmann number μ dynamic viscosity of 
fluid 

I identify tensor  transformed 
function

J current density θ angular coordinate

k* mean absorption 
coefficient

ρ fluid density

k0 thermal 
conductivity 
(W/m. K)

γ fluid electrical 
conductivity 
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L velocity vector 
gradient

σ* Stefan–Boltzmann 
constant

Nu Nusselt number δ shear stress

p pressure (Pa) ζ dimensionless 
parameter

Pr Prandtl number Subscripts

Rd Radiation 
parameter

r radiation

r Radial w wall

q heat flux 

I. INTRODUCTION

Investigating of non-Newtonian fluids has been important 
topic over the last few decades owing to its numerous 
applications in engineering and industry. Such fluids cannot 
be analyzed  using Newton’s  law  of  viscosity  and  thus  well-
known Navier-Stokes equations are inadequate for their flow 
description. The non-Newtonian fluids differ greatly from the 
viscous fluids in the sense that these cannot be examined by 
employing a single constitute equation. Hence several 
constitutive relationships for the non-Newtonian fluids have 
been suggested. Classification of non-Newtonian fluids in 
general is presented into these categories namely the 
differential, rate and integral. The governing equations in non-
Newtonian fluids are more nonlinear and high order than the 
Navier-Stokes equations. In fact the rheological parameters in 
the constitutive equations of non-Newtonian fluids are the 
main culprit which make the resulting equations more tedious 
and highly nonlinear. The issue of boundary conditions as 
well as the nonlinearity of the involved equations limit the 
solutions of the flow for non-Newtonian fluids. Amongst the 
several subclasses of differential type fluids, the second grade 
model has received much attention. This is because of 
simplicity regarding its constitutive expression. More this 
subclass can predict the important phenomenon of normal 
stress effect. Good list of references on the flows of second 
grade fluid may be directed by the studies [1-10] and many 
attempts therein. In ref. [10] Hayat et al. discussed the MHD 
Jeffery-Hamel flow of second grade fluid when thermal 
radiation effect in the heat transfer has been ignored. Detailed 

review of Jeffery-Hamel problem under various aspects is 
given by Motsa et al. [11] and Makinde and Mhone [12]. 

Zhou [13] in 1986 firstly introduced the differential 
transformation method (DTM). This technique was utilized 
for the solution of linear and nonlinear initial value problems 
arising in electric circuit analysis. This technique has 
advantages in the sense that it can be applied directly to linear 
and nonlinear differential equations without requiring 
linearization, discretization or perturbation. Rashidi and Erfani 
[14] used DTM in order to find the fin efficiency of 
convective straight fins with temperature dependent thermal 
conductivity. They also compared their results with the HAM 
solutions. Hsiang Chang and Ling Chang [15, 16] used a new 
algorithm for computation of one and two-dimensional 
differential transform of nonlinear functions. The reduced 
differential transformation method for the solution of gas 
dynamic problem was employed by Keskin and Oturanç [17]. 
Chen and Ju [18] utilized the differential transformation 
method for the transient advective-dispersive transport 
equation. Linear and nonlinear initial value problems are also 
solved by Jang [19] using the projected differential transform 
method. This method can be easily applied to the initial value 
problem by less computational work. Hassan [20] used DTM 
for the solution of eigenvalue problems including those related 
to vibration. In fact, this method is used to solve a wide range 
of physical problems. This method provides a direct scheme 
for solving the linear and nonlinear deterministic and 
stochastic equations without linearization and yield rapidly 
convergent series solution. 

In this article, we develop the analysis for thermal radiation 
effect in MHD Jeffery-Hamel flow of a second grade fluid. 
The fluid is electrically conducting in the presence of applied 
magnetic field only. The electric and induced magnetic fields 
are not accorded. The consideration of MHD flow in channel 
is quite significant in crystal growth, design of medical 
diagnostic devices, control of liquid metal flows, etc. Further 
several engineering processes, for example, fossil fuel 
combustion energy, astrophysical flows, gas turbines, solar 
power technology and many propulsion devices for aircrafts, 
satellites, missiles and space vehicle occur at high 
temperatures and hence thermal radiation effect becomes 
important. In particular thermal radiation has central role in 
engineering processes occurring at high temperature for the 
design of many advanced energy conversion systems and 
pertinent equipment. Approximate solutions of velocity and 
temperature are constructed using differential transformation 
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method. The results of skin friction coefficient and Nusselt 
number are given proper attention. Plots are analyzed for the 
interesting parameters. It is found that skin friction coefficient 
in second grade fluid is similar to that of the viscous fluid. 
However, Nusselt number, temperature and velocity are 
strongly dependent upon parameter of second grade fluid.

II. BRIEF IDEA OF DIFFERENTIAL TRANSFORMATION METHOD

Consider the analytic function y(t) in a domain D where t=ti

represent any point in it. The function y(t) is represented by a 
power series at the centre ti. Taylor series expansion of y(t)
can be written as [21]:

   
0
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!
i

jj
i

j
j t t

d y tt t
y t t D

j d t



 

 
   

 


(1 )

M a c la u r in  se r ie s  o f y ( t)  c a n  b e  o b ta in e d  f ro m  a b o v e  
e q u a t io n  w h e n 0it  .  I t  is  p r e se n te d  in  th e  fo llo w in g  fo rm

   
0 0

                            
!

jj

j
j t

d y tt
y t t D

j d t



 

 
   

 


(2 )      

T h e  d i f f e re n tia l  t r a n s f o r m a t io n  o f  t h e  f u n c t io n ( )y t i s  

d e f in e d  a s :

   1

0 0 ,

           
!

jj

j
j t

d y tH
Y j

j d t



 

 
  

 


(3 )
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Table I includes some of the original and transformed 
functions. It should be point out that concept of differential 
transformation is the Taylor series expansion. Clearly more 
terms in Eq. (4) lead to better accuracy of solution in Eq. (4).

TABLE I
THE FUNDAMENTAL OPERATIONS OF DIFFERENTIAL 

TRANSFORM METHOD

Original function Transformed function

( ) ( ) ( )f x g x h x   ( ) ( ) ( )F k G k H k  

( ) ( ) ( )f x g x h x
0

( ) ( ) ( )
k

i

F k G i H k i


 

( )( ) ( ) nf x g x ( ) ( 1)( 2) ( ) ( )F k k k k n G k n    

( ) nf x x 1
( ) ( )

0

k n
F k k n

k n


 
     

( ) exp( )f x x
( )

!

k

F k
k




( ) (1 )nf x x  ( 1) ( 1)
( )

!

k k k m
F k

k

  




III. DESCRIPTION OF THE PROBLEM 

We consider a two-dimensional, steady and MHD of flow 
of second grade fluid at the intersection between two heated 
walls with 2α angle. Fig. 1 presents the model and geometrical 
coordinate. We assume that the velocity is only along the 
radial direction and depends on r and θ, V=V(u(r,θ),0) [22, 
23]. Further the flow in the channel subjected to the thermal 
radiation effect. The governing equations for MHD flow are:

0,div V
(5)

1 ,
d

div
dt

   
V

T J B

(6)

1. r

de
div

dt
   T L q q

(7)
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Fig. 1 Geometry of problem

In above equations J is the current density and B = B0 + b
is total magnetic field, ρ is the fluid density, d/dt is the 
material derivative, T1 is the Cauchy stress tensor, e is the 
internal energy, L is the velocity gradient, q is the heat flux 
vector, q r is the radiative heat flux and B0 is an applied 
magnetic field. The magnetic Reynolds number is taken small 
and hence the induced magnetic field is not accorded. The 
electrical field is neglected. In view of these assumptions, the 
Lorentz force J×B becomes

2
0 .  J B B V

(8)

where γ is electrical conductivity of fluid. Using Rosseland 
approximation [24] we have

*
4

*

4

3r T
k


  q

(9)

where γ* is the Stefan–Boltzmann constant, k* is the mean 
absorption coefficient and T is temperature. Employing 
Taylors’ series for T4 as out Tw, we obtain

4 3 44 3w wT T T T 
(10)

The Cauchy stress tensor T1 in a second grade fluid is [25].

(11)

(12)

(13)

(14)

In which p is the pressure, I is an identity tensor, μ is the 
fluid dynamic viscosity, is the gradient operator, α1 and α2

are the material constants, d/dt is the material time 
differentiation, T in the superscript denotes the Matrix 
transpose and A1 and A2 are the first two Rivilin Erickson 
tensors. Furthermore, α1 and α2 satisfy the following 
constraints [26]

1 1 20, 0, 0.      
(15)

Using the definition of velocity in the present flow and 
substituting of Eqs, (12)-(14) into Eq. (11) we have

(16
)

Now Eq. (5) takes the form

( ) ( , )f ru r 
(17)
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Invoking Eqs. (8)-(10) and Eqs. (15)-(17) into Eqs. (6) and 
(7) we arrive at

(18)

(19)

In which k0 and cp are the thermal conductivity and specific 
heat at constant pressure, respectively. The approximate 
boundary conditions in the present problem are:

 At the channel centerline:

( , )
0, 0, ( , )

u r T
u r U




 
 

  
 

(20)

 At the walls of channel:

( , ) 0, wu r T T  
(21)

Using the following dimensionless parameters

max
max

( )
( ) , , ( )

w

f T
F f rU

f T

 
   


   

(22)

Equations (18-21) are reduced into the following expressions

(23)

(24)

(25)

With

2
0 1

0

* 32

*
0

Re , , ,

4
Pr ,

p

w

p w

cB UrU
H De Ec

r k

TU
Rd

c T k k

 
  



   

 

(26)

In above equations the Reynolds number, the Hartmann 
number, the Deborah number, the Eckert number, the Prandtl 
number radiation parameter are denoted by Re, H, De, Ec, Pr, 
Rd. Further for divergent channel α>0, U>0 and convergent 
channel α<0, U<0.

It should be pointed out that the problems of viscous flow 
can be recovered from Eqs. (23) and (24) when De=0 [23].

The skin friction coefficient is defined by:

2
w

fc
U






(27)

In which the surface shear stress in δw the second grade 
fluid is

2

1 2

1 2 1 1
( ) ,w

u u u u u
u u

r r r r r r     
    

      
          

(28)

Putting Eq. (28) into Eqs. (27) and then using Eq. (22) we 
finally have
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1
(1)

Refc F 

(29)

The Nusselt number is given by:

* 3

0 *
0

16
, ( )

3
w w

w
w

rq T
Nu q k T

k T k
      

(30)

In view of Eq. (22) the above expression takes the 
following form

1 4
(1 ) (1)

3
Nu Rd 


  

(31)

In the next section we solve the problems consisting of Eqs. 
(23)-(25) by using DTM [13-21].

IV. SOLUTION BY DIFFERENTIAL TRANSFORMATION METHOD 

(DTM)

Using the standard DTM procedure we have from Eqs. 
(23)–(25) the following expressions

(32)

(33)

(34)

(35)

(36)

(37)

In which denote the transformed functions of andF  , 

respectively. Letting (2)G  and (0)   and using Eqs. 

(32)- (35), another value of ( )G i and ( )i can be calculated.

Thus we have

 
0

( ) i

i

F G i 





(38)

 
0

( ) i

i
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



 
(39)

Continuing this process and using above equations into Eq. 
(4) for H1=1, we obtain

  

     
 

2 4
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2Re 4 16
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12 48
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In order to determine the values of and we use the boundary 
conditions Eq. (25). Hence we have

  

     
 
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(44
)

The solutions of above equations through 
MATHEMATICA gives β and ε.

V. RESULTS AND DISCUSSION

The objective of this section is to examine the influence of 
different emerging parameters on the dimensionless velocity, 
temperature, the skin friction coefficient and local Nusselt 
number. Both cases of diverging and converging channels are 
accorded. Effects of the Reynolds number Re, Hartmann 
number H, Deborah number De and angle are given due 
attention. Figs. 2-8 illustrate the dimensionless velocity for 
both divergent and convergent channels. Effects of the 
Reynolds number Re, Deborah number De, Prandtl number 
Pr, Eckert number Ec, radiation parameter Rd and angle α on 
the dimensionless temperature in divergent channel are plot in 
the Figs. 9- 14, respectively. Influence of the Hartman number 
H and angle α on the dimensionless temperature in convergent 
channel is shown in the Figs. 15 and 16 respectively. Fig. 2 
shows that with the dimensionless velocity in divergent 
channel decreases when Reynolds number is increased. It is 
noticed from Fig. 3 that results for convergent channel are 
reverse.

Fig. 2 The effect of the Reynolds number on the 
dimensionless velocity in case of divergent channel

Fig. 3 The effect of the Reynolds number on the 
dimensionless velocity in case of convergent channel

Plots of velocity in divergent and convergent channels for 
Hartman number H are shown in the Figs. 4 and 5. Here in 
both cases, the dimensionless velocity increases when H
increases.
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Fig. 4 The effect of the Hartmann number on the 
dimensionless velocity in case of divergent channel 

Fig. 5 The effect of the Hartmann number on the 
dimensionless velocity in case of convergent channel

Variation of Deborah number on the dimensional velocity 
in divergent channel is given in Fig. 6. Fig. 7 represents the 
dimensionless velocity via Deborah number in convergent 
channel. It is found that velocity increases in divergent case 
and it decreases in the convergent case when Deborah number 
increases. 

Fig. 6 The effect of the Deborah number on the dimensionless 
velocity in case of divergent channel 

Fig. 7 The effect of the Deborah number on the dimensionless 
velocity in case of convergent channel

Fig. 8 depicts that how velocity is affected by angle α. It is 
revealed that in divergent channel, the velocity decreases, 
when α increases. However such results for convergent 
channel are opposite. From the Figs. 9-15 are evident that the 
dimensionless temperature in divergent channel increases 
when the parameters Re, De, Pr, Ec, H and α is increased. Fig. 
13 shows that the dimensionless temperature is decreasing 
function of Rd. Fig. 16 illustrates that the dimensionless 
temperature in convergent channel decreases when the angle 
increases. 
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Fig. 8 The effect of the angle on the dimensionless velocity

Fig. 9 The effect of the Reynolds number on the 
dimensionless temperature for in case of divergent channel

Fig. 10 The effect of the Deborah number on the 
dimensionless temperature for in case of divergent channel

Fig. 11 The effect of the Prandtl number on the dimensionless 
temperature for in case of divergent channel
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Fig. 12 The effect of the Eckert number on the dimensionless 
temperature for in case of divergent channel

Fig. 13 The effect of radiation on the dimensionless 
temperature for in case of divergent channel

Fig. 14 The effect of the angle on the dimensionless 
temperature for in case of divergent channel

Fig. 15 The effect of the Hartmann number on the 
dimensionless temperature for in case of divergent channel
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Fig. 16 The effect of the angle on the dimensionless 
temperature for in case of convergent channel

Tables II-V provide a comparative study of present results 
with the already reported results by other methods. Such 
Tables in fact confirm the validity of DTM. In particular, the 
comparison amongst results by DTM, homotopy perturbation 
method (HPM) [27] and numerical technique [27] is shown in 
Table II when for viscous fluid. Table III gives the 
comparison amongst DTM, OHAM [28], and SHAM [11]
results for Newtonian fluid in the case of divergent channel. 
Excellent agreement with DTM solutions is noticed.

TABLE II
COMPARISON BETWEEN PRESENT, HPM AND NUMERICAL 

RESULTS FOR MHD VISCOUS FLOW ( 0De  ) IN DIVERGENT 

CHANNEL WHEN: 7.5   AND Re 50 .

H=0

 DTM HPM [27] NS [27]

0 1 1 1

0.1 0.9771426 0.9770711 0.9771426

0.2 0.9114793 0.9112020 0.9114792

0.3 0.8110055 0.8104115 0.8110052

0.4 0.6869152 0.6859230 0.6869148

0.5 0.5512889 0.5498427 0.5512883

0.6 0.4151097 0.4131698 0.4151089

0.7 0.2870556 0.2846024 0.2870546

0.8 0.1731234 0.1702791 0.1731221

0.9 0.0768731 0.0744232 0.0768716

1 0.0000018 0 0

H=250

 DTM HPM [27] NS [27]

0 1 1 1

0.1 0.9837368 0.9837340 0.9837368

0.2 0.9363462 0.9363350 0.9363460

0.3 0.8617138 0.8616894 0.8617134

0.4 0.7653821 0.7653405 0.7653815

0.5 0.6534583 0.6533961 0.6534573

0.6 0.531548 0.5314621 0.5315467

0.7 0.4039245 0.4038130 0.4039228

0.8 0.2730003 0.2728708 0.2729980

0.9 0.1390445 0.1389433 0.1390416

1 0.0000037 0 0

H=500

 DTM HPM [27] NS [27]

0 1 1 1

0.1 0.9883197 0.9883197 0.9883197

0.2 0.9537953 0.9537955 0.9537953

0.3 0.8978512 0.8978515 0.8978511
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0.4 0.8224693 0.8224699 0.8224691

0.5 0.7296808 0.7296817 0.7296804

0.6 0.6209735 0.6209748 0.6209729

0.7 0.4966627 0.4966644 0.4966618

0.8 0.3552091 0.3552115 0.3552079

0.9 0.1923791 0.1923821 0.1923775

1 0.0000021 0 0

TABLE III
COMPARISON BETWEEN DTM, OHAM AND SHAM RESULTS 

FOR NEWTONIAN FLUID ( 0De  ) WHEN: RE=50 AND 5 

Re=50, 5 

 DTM OHAM [28] SHAM [11]

0 1 1 1

0.1 0.982431 0.98251808 0.982431

0.2 0.931226 0.93156588 0.931226

0.3 0.850611 0.8513815 0.850611

0.4 0.746791 0.74826039 0.746791

0.5 0.626948 0.62953865 0.626848

0.6 0.498234 0.50242894 0.498234

0.7 0.366966 0.37293383 0.366966

0.8 0.238124 0.24508197 0.238124

0.9 0.115152 0.1207156 0.115152

1 0.00000021 0.000000001 0

ABLE IV
COMPARISON BETWEEN DTM AND HAM RESULTS FOR SKIN 

FRICTION COEFFICIENT FOR DIFFERENT VALUES OF Re AND De IN 

DIVERGENT AND CONVERGENT CHANNEL WHEN: H=0.

Re De α Re fc

present

Re fc

[10]

α Re fc

present

Re fc

[10]

40 0.8 2o -
1.90718

-
1.90964

-
2o

-
2.08997

-
2.09020

80 -
1.81398

-
1.81347

-
2.17952

-
2.17999

120 -
1.71957

-
1.71881

-
2.26786

-
2.26856

160 -
1.62399

-
1.62295

-
2.35499

-
2.35591

100 0 2o -1.291 -
1.28910

-
2o

-
2.67623

-
2.67796

0.4 -
1.65163

-
1.65067

-
2.33228

-
2.33315

0.8 -
1.76693

-
1.76629

-
2.22384

-
2.24443

1.2 -
1.82427

-
1.77509

-
2.16943

-
2.11700

100 0.8 0o -
2.00000

-
2.00000

0o -
2.00000

-
2.00000

2o -
1.76693

-
1.76629

-
2o

-
2.22384

-
2.24443

4o -
1.52462

-
1.42330

-
4o

-
2.43867

-
2.43997

6o -
1.27345

-
1.27140

-
6o

-
2.64482

-
2.64644
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TABLE V
COMPARISON BETWEEN DTM AND HAM RESULTS FOR 

NUSSELT NUMBER FOR DIFFERENT VALUES OF Re , De , Pr AND Ec

IN DIVERGENT CHANNEL WHEN: 0, 0Rd H 

Re De α Pr Ec αNu

present

αNu

[10]

40 0.8 5o 5 0.5 5.36605 5.34102

80 5.21292 5.19476

120 5.10229 5.09998

160 5.06877 5.06849

100 0 5o 5 0.5 2.96071 2.96815

0.25 3.54499 3.54436

0.5 4.2758 4.26952

0.75 5.00702 5.03598

100 0.8 5o 1 0.5 1.03089 1.02804

3 3.09267 3.08413

5 5.15445 5.14021

7 7.21623 7.19630

100 0.8 5o 5 0.3 3.09267 3.08413

0.5 5.15445 5.14021

0.7 7.21623 7.19630

0.7 9.27801 9.25239

100 0.8 0o 5 0.5 5.46667 5.46667

2o 5.29137 5.28043

4o 5.18203 5.16667

6o 5.13829 5.13443

The skin friction coefficient and local Nusselt number for 
different values of emerging parameters are compared with 
the HAM results by Hayat et al. [10]. Tables IV and V provide 
such comparisons. It is noted from Table IV that skin friction 
coefficient in divergent channel case decreases when the 
Reynolds number Re and angle α increase. Also the skin 
friction coefficient increases when the Deborah number De
increases. The results of skin friction coefficient in a 
convergent channel are opposite to that of divergent channel. 
Table V describes that with increasing parameters De, Pr, Ec
and angle α, the Nusslt number increases as well. While the 
Nusselt number in the case of divergent channel decreases 
when the Reynolds number increases. Table IV also illustrates 
that the skin friction coefficient for Newtonian fluid is higher 
than the second grade fluid in the case of convergent channel. 
The effect of radiation on the Nusselt number is given in 
Table VI. Here we can see that when the radiation parameter 
in the case of divergent channel increases, the Nusselt number 
increases as well. It is evident from Tables IV and V that there 
is a good agreement with DTM and HAM results for the skin 
friction coefficient and Nusselt number.

TABLE VI
EFFECT OF RADIATION ON THE NUSSELT NUMBER IN THE

DIVERGENT CHANNEL WHEN: RE=50, DE=0.8, H=0, PR=5 AND 

EC=0.5

α=1o α=2o α=4o

Rd αNu αNu αNu

0 5.41975 5.38208 5.33408

0.3 5.42802 5.39896 5.36956

0.6 5.43263 5.40837 5.38941

0.9 5.43556 5.41437 5.4021

1.2 5.43759 5.41853 5.4109

VI. CONCLUSIONS

In this study, we investigate the DTM results for MHD 
flow of a second grade fluid in divergent and convergent 
channel with thermal radiation effect. The following 
observations can be made from presented DTM solutions:
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 Variation of Hartmann number on velocity in the cases 
of divergent and convergent channel are qualitative 
similar.

 Behavior of Reynolds and Deborah numbers on the 
velocity are similar in the both cases of convergent and 
divergent channels.

 Results of Hartmann and Deborah numbers on velocity 
in divergent channel are opposite

 Effects  of  α,  Prandtl,  Eckert,  Deborah  and  Reynolds 
numbers on the temperature in convergent and 
divergent channel cases are opposite in qualitative 
manner. 

 Skin friction coefficient in divergent channel is different 
for Reynolds and Deborah numbers.

 In divergent channel, the effect of α, Prandtl and Eckert 
numbers on the Nusselt number are similar.

 Skin friction coefficient in second grade fluid is not 
significant when compared with the viscous fluid.  
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