

5 IV April 2017

http://doi.org/10.22214/ijraset.2017.4061

www.ijraset.com Volume 5 Issue IV, April 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
328

A Systolic Hardware Architecture of Montgomery
Modular Multiplication for Public Key

Cryptosystems
Vinoth Kumar. D 1, Senthilkumaran. V2

1 M. E VLSI Design, 2Assistant Professor, ECE, Mahendra Engineering College, Namakkal, India

Abstract: The Montgomery modular multiplication is mostly used in the field public-key cryptosystems. This work presents how
to relax the data dependency in conventional word-based algorithms to increase the possibility of reusing the current words of
variables. With the greatly relaxed data dependency, i proposed a novel scheduling scheme to alleviate the number of memory
access in the developed scalable micro architecture. Analytical results show that the memory bandwidth requirement of the
proposed scalable architecture is almost 1=ðw _ 1Þ times that of conventional scalable architectures. The proposed one also
retains a latency of exactly 1 cycle between the operations of the same words in 2 consecutive iterations of the Montgomery
modular multiplication algorithm when employing enough processing elements. To Compared to the design with previous work,
experimental results shows that the proposed one achieves an 55 percent reduction in power consumption with no degradation in
throughput. The number of reduced memory access not only leads to lower power consumption, it also facilitates the design of
scalable architectures for any precision of operands.
Index Terms: Cryptosystems, low-power design, Montgomery modular multiplication, scalable architecture, VLSI

I. INTRODUCTION
The Montgomery multiplication [1] is complex than other cryptographic algorithms such as RSA, Digital Signature Algorithm
(DSA), Elliptic Curve DSA and other emerging cryptographic algorithms, such as pairing-based systems. Despite improvements in
the clock frequency and the level of parallelism of conventional microprocessors, software-based implementations of Montgomery
multiplication remain insufficient, both in terms of performance and energy efficiency. These computations have long carry chains
and their implementations are fundamentally different from systems that use composite fields with small characteristic (e.g.
GF(2167)). Existing FPGA Montgomery multiplier implementations for large integer systems have one major weakness: they all
use algorithms with O(N2) complexity i.e. the area and/or runtime increases quadratically with the bit-width of the computation. In
this paper, i improve the implementation of new Montgomery multiplication of lengthy integers at the algorithmic level in order to
lower complexity and high throughput. We have developed a parameterized Karatsuba multiplier using a combination of multiple-
precision and coarse-grained carry-save addition techniques. This method has complexity O(N(log 3= log 2)). The major
contributions of this work are: _ An FPGA-optimized design for irregular, recursive Karatsuba multiplication that is parameterizable
to different bit-widths and a batch-pipelined Montgomery multiplier based on the Karastuba multiplier. I compare the performance
and energy efficiency of the proposed Montgomery multiplier with existing software and hardware implementations.

II. BACKGROUND
In Many public-key cryptosystems [1]–[3], modular multiplication (MM) with large integers is the most critical and time-
consuming operation. There are many algorithms and hardware implementation have been presented to carry out the MM more
quickly, and Montgomery’s algorithm is one of the most well-known MM algorithms. Montgomery’s algorithm [4] determines the
quotient only depending on the least significant digit of operands and replaces the complicated division in conventional MM with a
series of shifting modular additions to produce S = A × B × R−1 (mod N), where N is the k-bit modulus, R−1 is the inverse of R
modulo N, and R = 2k mod N. Based on the representation of input and output operands, these approaches can be roughly divided
into semi-carry-save (SCS) strategy and full carry-save (FCS) strategy. In the SCS strategy [5]–[8], the input and output operands
(i.e., A, B, N, and S) of the Montgomery MM are represented in binary, but intermediate results of shifting modular additions are
kept in the carry-save format to avoid the carry propagation. However, the format conversion from the carry-save format of the final
modular product into its binary representation is needed at the end of each MM. This conversion can be accomplished by an extra
carry propagation adder (CPA) [5] or reusing the carry-save adder (CSA) architecture [8] iteratively. Contrary to the SCS strategy,

www.ijraset.com Volume 5 Issue IV, April 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
329

the FCS strategy [9], maintains the input and output operands A, B, and S in the carry-save format, denoted as (AS, AC), (BS, BC),
and (SS, SC), respectively, to avoid the format conversion, leading to fewer clock cycles for completing a MM.

III. PREVIOUSLY PROPOSED ARCHITUCTURE
A. Montgomery Modular Multiplier
In the proposed new SCS-based Montgomery MM algorithm is to reduce the critical path delay of Montgomery multiplier. Then
addition, the disadvantage of more clock cycles for completing one multiplication is improved while maintaining the advantages of
less critical path delay and low hardware complexity [2].
Critical Path Delay Reduction The critical path delay of SCS-based multiplier is reduced by combining the advantages of FCS-MM-
2 and SCS-MM-2. In this pre compute D = B + N and reuse the one-level CSA architecture to perform B+N and the format
conversion. Fig.1 shows the modified SCS-based Montgomery multiplication (MSCS-MM) algorithm and possible hardware
architecture .

Fig.1. Diagram of Montgomery Modular Multiplier

The Zero_D circuit is used to detect whether SC is equal to zero, which can be accomplished using one NOR operation. The Q_L
circuit decides the qi value. The carry propagation addition operations of B + N and the format conversion are performed by the one-
level CSA architecture of the MSCS-MM multiplier through repeatedly executing the carry-save addition (SS, SC) = SS + SC + 0
until SC = 0.In addition, I also pre compute Ai and qi in iteration i−1 (this will be explained more clearly in Section III-C) so that
they can be used to immediately select the desired input operand from 0, N, B, and D through the multiplexer M3 in iteration I [5]
Therefore, the critical path delay of the MSCS-MM multiplier can be reduced into TMUX4 + TFA, many extra clock cycles are
required to perform B + N and the format conversion via the one-level CSA architecture because they must be performed once in
every MM. Furthermore, the extra clock cycles for performing B+N and the format conversion through repeatedly executing the
carry-save addition (SS, SC) = SS+SC+0 are dependent on the longest carry propagation chain in SS + SC. That is, 3k clock cycles in
the worst case are required for completing one MM. Thus, it is critical to reduce the required clock cycles of the MSCS-MM
multiplier [1].

B. Algorithm
Input: T: w k-1 ≤ T < wk, where k is the number of bits.
R, S: 0 ≤ R, S < T
Output: O = R * S mod T
Algorithm:
O = 0;
for j = k − 1 downto 0 do
O = w * O + sj * R;
Uc = [O / T];
O = O – Uc * T;

www.ijraset.com Volume 5 Issue IV, April 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
330

End for

IV. PROPOSED MONTGOMERY MODULAR MULTIPLICATION ALGORITHM

Fig. 2. Dependency graph of Algorithm Modified_MM_R for w ¼ 3.

Fig. 2 illustrates the dependency graph of Algorithm Modified_MM_R for w ¼ 3, where the jth word-based operation of the ith
iteration is allocated in j th column and the I th row. For clarity, the symbols SM0, SR0, AP0 are replaced by SM, SR, and AP,
respectively. By taking advantage of that SM generated in the ith iteration is accumulated in the ði þ wÞth iteration, a task can
perform all of the operations in w 1 iterations instead of only one iteration. For example, since w ¼ 3 in Fig. 4, one PE can execute
all of the operations in two iterations in an interleaved manner. The two circles indexed with 0 and 1 in the same group, say X,
denote that the two X tasks for the same words in two consecutive iterations can be accomplished before moving to handle the Y
tasks for the next words of variables.

V. RESULTS AND DISCUSSION
The following figures titled Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5 implies the simulation results of the Classical,
Montgomery, Bipartite, Tripartite and for the Proposed algorithm. The result analysis had been done for all possible values of four
bit wide. The same algorithms were also extended for higher level of bits. The output is given in the terminal t. All the above
algorithms are coded in VLSI Hardware Description Language. The HDL codes are synthesized and simulated in Xilinx 9.1i version
of ISE simulator. The simulation results are compared with the manually calculated value and the logic of HDL code is verified.

The comparison table for all the above algorithms are based on the hardware utilized and time delays consumed for synthesis
and to implement all the above stated algorithms. The hardware computation can be summarized by considering the amount of
slices, LUTs used, adders/ subtractions and total number of comparators needed. The time make use of can be stated from the CPU
time usage and time delay. The comparison table is stated in Table 1. Thus the above results show that the proposed algorithm
produces significant reduction in time delay and in hardware computation.

VI. CONCLUSION AND FUTURE WORK
These results clearly depicts that the proposed algorithm produces a significant advantage in hardware and time consumption in
executing and implementing the algorithm. This drastic reduction in hardware and time delay is due to complete elimination of the
classical algorithm by normal interleaved multiplication method. On practicing this scenario, the bulk program which is needed to
execute the heavy division algorithm is completely avoided. The replacement of the division process by repeated subtractions is the
reason behind the trim down of the hardware. This makes a greater advantage while implementing the cryptosystems while
considering heavy input operands of larger size.
The current work is extended to make any modifications further to produce a significant reduction in hardware utilization and time
delay. This may be achieved by reducing the steps in algorithm which skip a bulk operation in this case a division operation, say.
The future work focuses on the modular multiplication to produce a speed in the calculation of final value.

www.ijraset.com Volume 5 Issue IV, April 2017
IC Value: 45.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET: All Rights are Reserved
331

REFERENCES
[1] Amber.P, Pinckney.N, and Harris, D. M. “Parallel high-radix Montgomery multipliers,”(2008) in Proc. 42nd Asilomar Conf. Signals, Syst., Comput., pp. 772–

776.
[2] Bunimov.V, Schimmler.M, and Tolg.B, “A complexity-effective version of Montgomery’s algorihm,” (2002) in Proc. Workshop Complex.Effective Designs.
[3] Gang.F, “Design of modular multiplier based on improved Montgomery algorithm and systolic array,” (2006) in Proc. 1st Int. Multi-Symp. Comput. Co mput.

Sci., vol. 2. Jun. 2006, pp. 356–359.
[4] Han, J. Wang S., Huang W., Yu Z., and Zeng X, “Parallelization of radix-2 Montgomery multiplication on multicore platform,”(2013) IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 21, no. 12, pp. 2325–2330,.
[5] Kuang S.-R., Wang J.-P., Chan K.-C., and Hsu. H.-W., “Energy-efficient high-throughput Montgomery modular multipliers for RSA cryptosystems,” (2013)

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 11,pp. 1999–2009,.
[6] McIvor.C, McLoone.M, and McCanny, J. V. “Modified Montgomery modular multiplication and RSA exponentiation techniques,”(2004) IEE Proc.-Comput.

Digit. Techn., vol. 151, no. 6, pp. 402–408,.
[7] Miyamoto A., Homma N., Aoki, T. and Satoh.A, “Systematic design of RSA processors based on high-radix Montgomery multipliers,”(2011) IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7, pp. 1136–1146.
[8] Neto, J. C. Tenca A. F., and Ruggiero W. V., “A parallel k-partition method to perform Montgomery multiplication,”(2011) in Proc. IEEE Int. Conf. Appl.-

Specific Syst., Archit., Processors, , pp. 251–254.
[9] Sassaw.G,. Jimenez.C.J, and Valencia.M, “High radix implementation of Montgomery multipliers with CSA,” (2010) in Proc. Int. Conf. Micro electron., Dec.

2010, pp. 315–318.
[10] Saemen.J and Rijmen.V, The block cipher Rijndael, Smart Card research and Applications, (2010)LNCS 1820, Springer-Verlag, pp. 288-296

