

1 III October 2013

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 4

Suffix to Prefix Rule and Substring Matching Rules of Sting
Matching Algorithms:

An Analytical study and Correlations

Jamuna Bhandari1, Anil Kumar2

1Student Member IEEE
1 Research Scholar, Dept. of CSE, Manipal University Jaipur, INDIA
jamuna.bhandari@muj.manipal.edu bunu17_bhandari@yahoo.com

2Senior Member IEEE
2Professor, Deptr of CSE, Manipal University Jaipur, INDIA

anil.kumar@jaipur.manipal.edu dahiyaanil@yahoo.com

Abstract – String matching is a profound problem in various fields and becomes a great challenge for running a program for pattern matching

quickly and effectively with less or no complexities. The application of string matching or pattern matching is widely increased as new technologies

are used in medical science, network security, forensic science, library sciences and many others for information detection and retrieval. Algorithms

for string matching were designed since 1974 and till date lots of algorithms have been proposed. This analytical study presents the mechanism also

called rules follows for pattern matching process. This includes analysis and correlations of suffix to prefix rule and substring matching rules with

different cases, supported by appropriate figures and examples to justify the relations among them.

Keywords: String Matching, suffix to prefix, substring matching, 2-substring, 1-suffix, char-matching.

1. INTRODUCTION

A process of finding some given string or pattern within the
given text is known as string matching or sometimes called
pattern matching. Sting matching is done in two ways via
exact string matching and via approximate string matching.
Exact matching[1],[2],[14] is a process of finding occurrence
of pattern P exactly matched within a given text T whereas an
approximate matching[2],[15] is a process of finding
occurrence of patterns P approximately with some differences
of mismatch characters within the text T.

String matching rules are the processes which are used to
compare the characters of pattern P with given text T in order
to find where the pattern P occurs exactly within the text T.
Searching should be done with minimum comparing steps.
Every algorithm follows some mechanisms to reduce the
required time complexities used in preprocessing phase and in
searching phase[1].

This paper analyzed the suffix to prefix rules and substring
matching rules of exact string matching algorithms[16] The
paper is organized as follows, section 2 includes Rule 1

(suffix to prefix) and Rule 2 (substring matching) with its
sub-rules discussed in details, followed by the correlations
among them in section 3. Finally concludes in section 4.

2. Analysis of suffix to prefix rule and substring

matching rules.

This section analyzed the working of suffix to prefix rule
known as Rule-1 and substring matching rules as Rule-2.

2.1. Suffix to prefix rule: Rule-1 suffix to prefix rule

work as, if suffix of text T is found to be matched with the

prefix of pattern P then shifting of pattern is done to align

matching portion correspondingly as shown in figure 1.

Length of suffix can be 2 to m'' [where m'' (m'-i) is the length
of text window T and m is length of pattern P (m=m'')]and
length of prefix can be 1 to m-1

Algorithm 1: Suffix to Prefix

If (m- j) == (m-k)

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 5

Then shift (m – k) characters.

Else shift m characters.

Where, i, j and k are the pointer used to point at positions of
pattern and text.

T: GCATCGACAGACTATACAGTACG

P: GACGGATCA

Skip (m - k) = 9 – 3 = 6. (by 6 characters)

T: GCATCGACAGACTATACAGTACG.

P: GACGGATCA

Again m = 9, k = 0 (Zero because no in suffix and prefix)

So, m – k = 9 – 0 = 9 (skip by 9).

T: GCATCGACAGACTATACAGTACG.

P: GACGGATCA

2.2. Substring matching rule

Substring matching rule is further divided into four sub-rules

◦ Substring matching rule as rule-2

◦ Character matching rule as rule-2.1

◦ 1-suffix rule as rule-2.2

◦ 2-substring matching rule as rule-2.3

This section analyzed all the sub rules of substring matching
rules.

2.2.1. Substring matching rule (Rule-2)

Consider any substring say either α, u and z of text T as
shown in figure 2(a). Find the substring that to be matched in
pattern P.

According to figure 2(a) matched portion v is considered as
longest substring. Substrings α, u and z are the substrings

within v. Substring u is found to be matched in pattern P.
Shift the pattern in such a way that both the u aligns
corresponding to each other as shown in figure 2(b);
otherwise, skip pattern by pattern length (j'-i).

Length(α, z) may be 0 to m-1 and

Length(u) may be 1 to m.

Algorithm 2: Substring matching

If [substring T(j', k') = = Substring P(j, k)]

Then shift pattern by (j' – j).

Else shift pattern (j'-i).

Where j and k are the reoccurrence position at pattern P and j'
and k' are the occurrence position of text T.

Example 2:

T: GCATCGAGGAGAGTATACAGTACG

P: GGAGCCGAG

Here, mismatch occurs between char A of text T and C of
pattern P. Substring GAG at T(7, 9) position and reoccurs at
pattern P(2, 4).

So now slide the window by (j'-j)=(7-2 = 5).

T: GCATCGAGGAGAGTATACAGTACG

P: GGAGCCGAG

2.2.2. Character matching rule (Rule-2.1)

Character matching rule, search for reoccurrence of
mismatched character of text T also known as bad character in
pattern P.

Suppose, char x of text T mismatch with corresponding
character of pattern P at position j and reoccurs x in pattern P
at position k as shown in figure 3(a).

Algorithm 3: Char matching rule.

If bad char x occur in pattern P.

Then shift pattern by (j-k)th characters

Else Shift by j

1 2 3 4 5

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Here m = 9, k = 3

Example 1:

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 6

Figure3(b) shows bad char x found in pattern P, so shift by
position to align corresponding bad char together. Figure 3(c)
shows, no bad character found in pattern P.

Example 3:

T: GCATCGAGGAGCGTATACAGTACG

P: GAGGCCGCG

Here, A mismatch with C at position 6. A is considered as bad
character. Now look whether char A occurs anywhere in
pattern P or not.

If it found then shift the pattern by (j-k) position. According
to example 3 A occurs at position 2 in pattern P.

So, (j-k) = (6 – 2 = 4) shift by 4.

T: GCATCGAGGAGCGTATACAGTACG

P: GAGGCCGCG

2.2.3. 1- Suffix rule (Rule-2.2)

1-Suffix rule always consider the 1st character of suffix of text
T. As shown in figure 4, Let x be the 1st char of suffix of text
T at position m'. Now search reoccurrence of x in pattern P.

Algorithm 4: 1-suffix algorithm

If T(char m') found in pattern P

Then shift pattern by (m-k)

Else shift pattern by m

T: GCATCGAGGAGCGTATACAGTACG

P: GAGGCCGCG

Shift by (m-k) = (9 – 7) = 2 position, now shift will be as
given below.

T: GCATCGAGGAGCGTATACAGTACG

P: GAGGCCGCG

Shift by (m-k) = (9 – 2) = 7 so on.

2.2.4. 2- Substring matching rule (Rule-2.3)

This rule works with two consecutive characters. One char
should be bad char and another should be suffix of bad char
as shown in figure 5(a).

Here, u and x are two consecutive characters with x as bad
char of text T.

Algorithm 5: 2-substring matching rule

If (k ==i && k+1 == i+1)

Then Shift by (j-i)

Else shift by (j+1)

(Where j is the mismatch position at pattern, k is the position
of bad character, i is the position of bad character
occurrence in pattern).

Figure 5(b) shows shifting after match found of 2-substing in
pattern P

Example 5:

T: GCATCGAGGAGCGTATACAGTACG

P: GAGACCAAG

Here mismatch occurs between G and A of text and pattern.
GA of text is now considered as 2-substring. Mismatch
position j = 7 and reoccurrence position i=3 in pattern P (Also
k=j && k+1=i+1).

Now shift by (j-i)=7-4=3 position

T: GCATCGAGGAGCGTATACAGTACG

P: GAGACCAAG

2. CO-RELATION AMONG SUFFIX TO PREFIX
RULE AND SUBSTRING MATCHING RULES.

This section discussed the relations among rule-1 with rule-2
and its sub-types.

2.1. Rule-1 correlation with Rule-2

Rule-2, substring matching of pattern P is done by searching
reoccurrence of substring of text T within the pattern P as
shown in figure 6(a).

Suppose v is the matching portion of text T with pattern P.

1 2 3 4 5 6 7 8 9

1 2 3 4

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Example 4:

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 7

1 m

P
kv

T

P
v

Fig. 1: Suffix to prefix rule

mk1

m'ji

v

α, u and z are the substrings of text T. (v= α| u| z).

Case 1: If v is found in prefix of pattern P then it becomes the
special case of Rule-1 as shown in figure 6(b)

Case 2: If substring u and z are found in prefix of pattern P
then it also becomes the special case of Rule-1 as shown in
figure 6(c). Same is applicable for substring z.

2.2. Rule-1 correlation with Rule-2.1

Rule-2.1, char matching rule also called bad char rule looks
for occurrence of only one char (mismatched char of text T).
Rule-2.1, establishes the relation in following cases.

Case 1: If char mismatches at position m of pattern and bad
char a reoccurs only at prefix of pattern P as shown in figure
7(a). Then it rule-2.1 becomes a special case of rule-1.

Case 2: If bad character of text T appears in prefix of pattern
P followed by matched substring u as shown in figure 7(b)
then this also becomes a case of Rule-1.

2.3. Rule-1 correlation with Rule-2.2

Rule-2.2, 1-suffix rule is look for 1st character (suffix) of text
T within the pattern P. 1-suffix rules establishes the relation
with rule-1 in following cases.

Case 1: If 1-suffix char reappears once only at prefix of
pattern P as shown in figure 8(a).

Case 2: If 1-suffix character of text T found in prefix of
pattern along with its prefix characters of Text T as shown in
figure 8(b) then the shifting becomes the special case of Rule-
1

2.4. Rule-1 correlation with Rule-2.3

Rule-2.3, 2-substring character is searching for substring
within the pattern P. Rule-2.3 makes relation with Rule-1 in
following cases.

Case 1: If the 2-substring character mismatches at position
m-1 of pattern P and reappear only at prefix of pattern P then
this will become a special case of Rule-1 as shown in given
figure 9(a).

Case 2: If 2-substring character of text T found in prefix of
pattern along with its prefix characters of Text T as shown in
figure 9(b) then the shifting becomes the special case of Rule-
1

Following table shows the algorithms based on suffix to prefix
rule and substring matching rules and its types.

3. CONCLUSIONS

This paper analyzed and correlates the suffix to prefix rule with
substring matching rules and its sub-rules. The examples and
figures mentioned in this paper compare the pattern and text
from right to left. The comparisons may also be done from left
to right and apply the same rules in same manner. Table 2
shows the different algorithms designed based on suffix to
prefix rule and substring matching rules. KMP algorithm
compares the pattern from left to right and BM compares from
right to left but both of them also uses rule-1. So comparison
done in any order applies any rules. It shows that they are
interrelated to each others in terms of shifting the patterns not
in scanning order.

4. Figures and Table

This section includes all the figures and table used to justify the
analysis and correlations.

zuα

α z

v

v

u

T

P

u

mj1 k

m'k'j'i

Figure 2(a): Substring u found in pattern

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 8

T

P

Figure 5(a): 2-sub string rule

i i+1 j j+1

z

z

k k+1

x u

v

v

x u y u

T

Figure 5(b): 2-substring matching shift

i i+1 j j+1

x u y u

k k+1

x u

P

α u

P

T

zuαba

z

v

v

u

Figure 6(a): Substring matching rule

P

T

v

Figure 6(b): substring v shift as rule-1

v

v

Figure 7(a): Bad Character a as rule-1

1

i

m

m'

baP

T a

Figure 3(c): No bad char found in pattern

1 m

i
'

j
m'

T

P

x

Figure 4: 1-suffix rule

x

1 m

i
'

m'

T

P

x

k

α

v

v

Figure 6(c): Substring u and z as rule-1

P

T

u zzu

α u z

v

m

Figure 3(b): pattern shift after match is

found

v1 k

i
'

j m'

T

P

x

x b

a

a b u

v

v

Figure 7(b): bad char a with u as rule-1 shift

u

P

T

u

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 9

ALGORITHMS RULE APPLIED

Fast pattern matching in string [2]

Rule-1: Suffix to prefixon the exact complexity of string matching: upper bounds[11]

String matching algorithms and automata[12]

Fast String Algorithm [3]
Rule-1: Suffix to prefix
Rule-2.1: Char MatchingHybrid exact string matching algorithm for intrusion detection system[17]

On improving the average case of BM algorithm [5] Rule-2.3: 2-substring rule

A very fast search algorithm[6]

Rule-2.2: 1-suffix rule

Fast string searching[7]

Practical fast searching in string[4]

Tuning the BMH string searching algorithm[10]

Experiments with a very fast substring search algorithm [8]

Fastest pattern matching in string[9]
Rule-2.1: Char matching rule
Rule-1: Suffix to prefix

A simple fast hybrid pattern- matching algorithm[18]
Rule-2.2: 1-suffix rule
Rule-1: Suffix to prefix

Figure 8(b): 1-suffix match with preceding char

uα

xubxuα

T

P

x

x

Figure 9(a): 2-substring as rule-1

x zzu

T

P

v

v

zu

c

c

Figure 8(a): 1-suffix char at prefix as rule-1

T x

P b aa

a

zu

u azbaz

Figure 9(b): 2-substring with matched suffix
a

T

P

a

Table 1: Suffix to prefix and substring based algorithm

www.ijraset.com Vol. 1 Issue III, October 2013
ISSN: 2321-9653INTERNAT IONAL JOURNAL FOR RESEARCH IN APPL IED SC IENCE ANDENGINEER ING TECHNOLOGY (I JRASET)

Page 10

Acknowledgement

This work is partially supported by HRD, Govt. Of Sikkim
(India), vide notification no. 166/SCH/EDN 2003, Ref. No
82/SCH/EDN, issued on 20/7/2013

REFERENCES
[1] Knuth, D. E., Morris, JR, J. H., and Pratt, V. R. 1977.

Fast pattern matching in strings. SIAM J. Comput. 6, 1,
323–350, 1977

[2] Patrick A. V. Hall. 1980. Approximate string matching,
ACM

[3] Boyer, R. S. and Moore, J. S.1977, A fast string
searching algorithm. Commun. ACM, 1977, 20, 762–
772.

[4] Horspool, R. N. 1980. Practical fast searching in strings.
Softw. Pract. Exp. 10, 6, 501–506

[5] Zhu, R. F. and Takaoka, T. 1987. On improving the
average case of the Boyer-Moore string matching
algorithm. J. Inform. Process. 10, 3, 173–177.

[6] Sunday, D. M. 1990. A very fast substring search
algorithm. Commun. ACM 33, 8, 132–142.

[7] Hume, A. and Sunday, D. M. 1991. Fast string searching.
Softw. Pract. Exp. 21, 11, 1221–1248.

[8] Smith P.D.1991. Experiments with a very fast substring
search algorithm. Software - Practice & Experience
21(10) pp. 1065-1074.

[9] Colussi, L. 1994. Fastest pattern matching in strings. J.
Algorithms 16, 2, 163–189

[10] Raita, T. 1992. Tuning the Boyer-Moore-Horspool string
searching algorithm. Softw. Pract. Exp. 22, 10, 879–884

[11] Galil, Z. GIancarlo, R. 1992, on the exact complexity of
string matching: upper bounds, SIAM journal on
computing, 21(3): 407 - 437.

[12] Simon, I. 1993. String matching algorithms and
automata. In Proceedings of the 1st South American
Work-shop on String Processing, R. Baeza-Yates and N.
Ziviani, Eds. Universidade Federal de Minas Gerais,
Brazil, 151–157

[13] Berry, T. and Ravindran, S. 1999. A fast string matching
algorithm and experimental results. In Pro-ceedings of
the Prague Stringology Club ’99, J. Holub and M. Sim
´anek, Eds. Czech Technical

[14] C. Charras, T. Lecroq, "Handbook of Exact String
Matching Algorithms", http://www.ezdoum.
Com/upload/10/20020720023851/string.pdf, 2013.

[15] C. W. Lu, C. L. Lu, R.C.T. Lee, "A new filtration method
and a hybrid strategy for approximate string
matching", Theoretical Computer Science, Volume
481, 15 April 2013

[16] . W. Lu, C. L. Lu, R.C.T. Lee, Exact String matching
rules for algorithms”,
http://alg.csie.ncnu.edu.tw/lecture_notes_stringmatching.
php.

[17] Awsan Abdulrahman Hasan and Nur’aini Abdul Rashid,
Hybrid exact string matching algorithm for intrusion
detection system, ICCIT, 2012.

[18] Frantisek Franek, Christopher G. Jennings, and William
F. Smyth, A simple fast hybrid pattern- matching
algorithm, springer, 2005.

