

2 VIII August 2014

www.ijraset.com Vol. 2 Issue VIII, August 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 160

Evaluating Code Clone Techniques
*1 Ritu, *2 Sunita Rani

Bhagat Phool Singh Mahilla Vishwavidalya

Computer Science & Engineering

Abstract— In the last decade, several researchers have investigated techniques to detect duplicated code in programs exceeding
hundreds of thousands lines of code. All of these techniques have known merits and deficiencies, but as of today, little is known
on where to fit these techniques into the software maintenance process. This paper compares three representative detection
techniques (simple line matching, parameterized matching, and metric fingerprints) by means of five small to medium cases and
ses the differences between the reported matches. Based on this experiment, we conclude that (1) simple line matching is best
suited for a first crude overview of the duplicated code; (2) metric fingerprints work best in combination with a refactoring tool
that is able to remove duplicated subroutines; (3) parameterized matching works best in combination with more fine-grained
refactoring tools that work on the statement level.

Keywords— Include at least 5 keywords or phrases

1. INTRODUCTION

Code cloning or the act of copying code fragments and making
minor, non–functional alterations, is a well-known problem for
evolving software systems leading to duplicated code fragments
or code clones. Of course, the normal functioning of the system
is not affected, but without countermeasures by the maintenance
team, further development may become prohibitively expensive
[7, 18]. Fortunately, the problem has been studied intensively
and several techniques to both detect and remove duplicated
code have been proposed in the literature. As far as removal of
duplicated code is concerned, the state of the art proposes
refactoring which is a technique to gradually improve the
structure of (object-oriented) programs while preserving their
external behaviour [17]. Extract Method which extracts portions
of duplicated code in a separate method is an example of a
typical refactoring to remove duplicated code. However, quite
often one must use a series of refactoring to actually remove
duplicated code, as in Transform Conditionals into
Polymorphism where duplicated conditional logic is refectories
over the class hierarchy using polymorphism [7]. With
refactoring tools like the refactoring browser [6] emerging from
research laboratories into mainstream programming
environments1, refactoring is becoming a mature and

widespread technique. Concerning the detection of duplicated
code, numerous techniques have been successfully applied on
industrial systems. These techniques can be roughly classified
into three categories. (i) string-based, i.e. the program is divided
into a number of strings (typically lines) and these strings are
compared against each other to find sequences of duplicated
strings [8, 12]; (ii) token-based, i.e. a lexer tool divides the
program into a stream of tokens and then searches for series of
similar tokens [2, 13]; (iii) parse–tree based , i.e., after building
a complete parse-tree one performs pattern matching on the tree
to search for similar sub–trees [14, 15, 4]. On the first
International Workshop on Detection of Software Clones, a
number of research groups recently participated in a clone
detection contest2 to compare the accuracy of different tools
against a benchmark of programs containing known duplication.
The results of this experiment are currently being analysed by
the participants. Despite all this progress, little is known about
the most optimal application of a given clone detection
technique during the maintenance process. For instance, which
technique should one use in a problem assessment phase, when
one suspects duplicated code but isn’t sure how much and in
which files? Or which technique works best in combination with
a refactoring tool, which has to know the exact boundaries of the
code segment to be refactored, including possible renaming of

www.ijraset.com Vol. 2 Issue VIII, August 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 161

variables and parameters? To answer these questions, this paper
compares three representative clone detection techniques —
namely simple line matching, parameterized matching, and
metric fingerprints— by means of five small to medium cases.
The reported matches as well as the process are analysed with
special interest in differences. Afterwards, our findings are
interpreted in the context of a generic software maintenance
process and some suggestions are made on the most optimal
application of a given technique. The paper is structured as a
comparative study, however due to the multiple aspects
involved in the issue studied a more extensive experiment is
necessary in the near future. A brief overview of existing
duplicated code detection techniques is given in section 2. The
experimental set-up, including the questions and cases driving
the experiment are discussed in section 3. The results of section
4 are interpreted in section 5 to evaluate where the given
technique might fit into the software maintenance process.
Finally, section 6 summarises our findings in a conclusion.

2. DETECTION TECHNIQUES

The detection of code clones is a two phase process which
consists of a transformation and a comparison phase. In the first
phase, the source text is transformed into an internal format
which allows the use of a more efficient comparison algorithm.
During the succeeding comparison phase the actual matches are
detected. Due to its central role, it is reasonable to classify
detection techniques according to their internal format. This
section gives an overview of the different techniques available
for each category while selecting a representative for each
category.

2.1. String Based

String based techniques use basic string transformation and
comparison algorithms which makes them indepen-dent of
programming languages. Techniques in this category differ in
underlying string comparison algorithm. Comparing calculated
signatures per line is one possibility to identify for matching
substrings [12]. Line matching, which comes in two variants, is
an alternative which is selected as representative for this
category because it uses general string manipulations. Simple
Line Matching is the first variant of line matching in which both
detection phases are straightforward. Only minor
transformations using string manipulation operations, which can
operate using no or very limited knowledge about possible

language constructs, are applied. Typical transformations are the
removal of empty lines and white spaces. During comparison all
lines are compared with each other using a string matching
algorithm. These results in a large search space which is usually
reduced using hashing buckets. Before comparing all the lines,
they are hashed into one of n possible buckets. Afterwards all
pairs in the same bucket are compared Duploc is a Smalltalk
tool which implements such a simple line matching technique
[8], however also a Java version is available. Simple Line
Matching is the first variant of line matching in which both
detection phases are straightforward. Only minor
transformations using string manipulation operations, which can
operate using no or very limited knowledge about possible
language constructs, are applied. Typical transformations are the
removal of empty lines and white spaces. During comparison all
lines are compared with each other using a string matching
algorithm. This results in a large search space which is usually
reduced using hashing buckets. Before comparing all the lines,
they are hashed into one of n possible buckets. Afterwards all
pairs in the same bucket are compared Duploc is a Smalltalk
tool which implements such a simple line matching technique
[8], however also a Java version is available.

2.2 Parameterized Line Matching

It is another variant of line matching which detects both
identical as well as similar code fragments. The idea is that since
identifier–names and literals are likely to change when cloning a
code fragment, they can be considered as changeable
parameters. Therefore, similar fragments which differ only in
the naming of these parameters, are allowed. To enable such
parameterization, the set of transformations is extended with an
additional transformation that replaces all identifiers and literals
with one, commo identifier symbol like ”$”. Due to this
additional substitution, the comparison becomes independent of
the parameters. Therefore no additional changes are necessary to
the comparison algorithm itself. Parameterized line matching is
discussed in [9].

2.3. Token Based

Token based techniques use a more sophisticated transformation
algorithm by constructing a token stream from the source code,
hence require a lexer. The presence of such tokens makes it
possible to use improved comparison algorithms.b Next to

www.ijraset.com Vol. 2 Issue VIII, August 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 162

parameterized matching with suffix trees, which acts as
representative, we include [13] in this category because it also
transforms the source code in a token-structure which is
afterwards matched. The latter tries to remove much more detail
by summarising non interesting code fragments.

Parameterized Matching With Suffix Trees consists of three
consecutive steps manipulating a suffix tree as internal
representation. In the first step, a lexical analyser passes over
the source text transforming identifiers and literals in parameter
symbols, while the typographical structure of each line is
encoded in a non-parameter symbol. One symbol always refers
to the same identifier, literal or structure. The result of this first
step is a parameterized string or p-string. Once the p-string is
constructed, a criterion to decide whether two sequences in this
p-string are a parameterized match or not is necessary. Two
strings are a parameterized match if one can be transformed
into the other by applying a one-to-one mapping renaming the
parameter symbols. An additional encoding prev(S) of the
parameter symbols helps us verifying this criterion. In this
encoding, each first occurrence of a parameter symbol is
replaced by a 0. All later occurrences are replaced by the
distance since the previous occurrence of the same symbol.
Thus, when two sequences have the same encoding, they are
the same except for a systematic renaming of the parameter
symbols. After the lexical analysis, a data structure called a
parameterized suffix tree (p-suffix tree) is built for the p-string.
A p-suffix tree is a generalisation of the suffix tree data
structure [16] which contains the prev()-encoding of every
suffix of a P-string. Concatenating the labels of the arcs on the
path from the root to the leaf yields the prev()-encoding of one
suffix. The use of a suffix tree allows a more efficient detection
of maximal, parameterized matches. All that is left for the last
step, is to find maximal paths in the p-suffix tree that are longer
than a predefined character length. Parameterized matching
using suffix trees was introduced in [2] with Dup as
implementation example.

2.4. Parse-tree Based

Parse tree based techniques use a heavyweight transformation
algorithm, i.e. the construction of a parse tree. Because of the
richness of this structure, it is possible to try various comparison
algorithms as well.

Figure 1. Detection steps for the metric fingerprint technique

Metric Fingerprints builds on the idea that you can characterise
a code fragment using a set of numbers. These numbers are
measurements which identify the functional structure of the
fragment and sometimes the layout. The metric fingerprint
technique can be divided in five steps, each with a well-defined
task. However the algorithm behind each task may differ
between implementations. Figure 1 shows the basic steps in the
detection process. Before we can characterise the functional
structure of a code fragment with numbers, it’s wise to
transform the source code into a representation that allows us to
calculate such measurements efficiently. This transformation job
is done using a parser which builds the syntax tree of the source
code. After parsing we end up with one large syntax tree. This
tree is then split into interesting fragments. The choice of the
type of fragments used is difficult because it affects the
detection results. Most of the time, however, method and scope
blocks are used as fragments since they are easily extracted from
a syntax tree. Afterwards the fragments are characterised
through a set of measurements by measuring the values for a set
of metrics, chosen in advance. This set of metrics can differ
between various implementations, but most of the time it
specifies functional properties. However there are
implementations in which layout metrics are used as well.
Cyclomatic complexity, function points, expression complexity
(functional) and lines of code (layout) are examples of possible
measures. Finally, these sets of numbers are compared to each
other. Depending on the implementation, algorithms with
different levels of sophistication or power may be used. One
possible approach calculates the Euclidean distance between
each pair of fingerprints, considering fragments within zero
distance as clones. Both [14] and [15] describe a possible
implementation of metric fingerprints. In the first, the metric set

www.ijraset.com Vol. 2 Issue VIII, August 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 163

consists of 5 indirect metrics which are treated as a vector, while
the latter uses 21 measures which are compared to each other
using a system of hierarchical categories (an overview of both
techniques can be found in [19]).

3. RESEARCH APPROACH

The research process used during our experiment is based on the
Goal-Question-Metric paradigm which states that you should (1)
outline a goal, (2) generate questions that verify whether the
goal has been met and (3) select measures to answer them [3].

3.1. Experimental set-up

The next step after selecting research questions, consists of
constructing an experiment that answers these questions. For the
experiment reported in this paper following steps were
conducted:

Creation of reference implementations — Evaluating clone
detection techniques differs from the evaluation ofclone
detection tools, in that it is the algorithm that is evaluated
instead of the implementation. Difference in execution time
between tools can for example be caused by the use of different
programming languages or the application of techniques such as
parallel computing. Unlike [5], which evaluate the results of
various detection tools, this experiment focusses on the
techniques themselves.

To evaluate each of these techniques, reference implementations
of them were made in Java. Each of these implementations tried
to adhere as closely as possible to the original technique’s
specification as given in [2] for parameterized matching using
suffix trees and [14, 15] for the metric fingerprint technique. For
simple line matching such a reference implementation was
already available and the original Duploc-tool[8] was used as an
additional reference.

selection of cases — Five case were selected to evaluate the
different techniques. These cases are representative for different
degrees of duplication. Their limited size (under 10 000 LOC)
allows an in-depth study of the duplication present as well as the
reported matches. Section 3.4 describes each of the different
cases.

application of the implementations — After selecting the
cases, the different techniques were applied on each of them.

comparison and collection of results — At the end, the different
matches were studied and compared with the different
techniques. Data that was related to the execution of the
different implementations like the execu-tion time and its
memory use, was studied as well.

3.2. Selected Cases

For the experiment, we selected five small to medium sized
cases which are known to suffer from different kinds of
duplication, although we did not know the exact locations of the
duplicated code beforehand. Therefore, these cases are
representative for various usage scenario’s or different amounts
of clones. Moreover, all cases are available on the web which
allows replication of the experiment by other researchers
studying duplicated code detection techniques. Following cases
were used:

- ScoreMaster is a Java application automatically
generated for the Enhydra web–server. Because most of
the code has been generated automatically, it contains a
high degree of duplication.

- TextEdit is an example project that is distributed with
Borland’s JBuilder to demonstrate GUI programming in
Java. Due to its educational nature it contains little
duplication[20].

- Brahms is music sequencing and notation software for
linux written in C++ and was formerly known as
KooBase. The small amount of duplication present is of a
different nature because the code was written manually in
an open source context[1].

- JMocha is a Java beans benchmark developed by
IBM[11].

- Java Parser of JMetric is, as indicated by its name, a Java
parser generated by Java for the Metric project. It
concerns a larger example of automatically generated
code full of duplication [10].

www.ijraset.com Vol. 2 Issue VIII, August 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 164

4. RESULTS

This section reports about the experiment by answering
the questions listed under 3.2. A summary of these 5.
answers is given by table 1.

How much configuration is needed to apply on another
language?

Simple line matching, as it only utilizes basic string
manipulations, is a truly language independent
technique which is very easy to configure. As a
language independent technique, no modification is
required to be applicable on different languages. All
the remaining techniques on the other hand, do require
configuration. For parameterized matching the
portability to another language is fair. Changing the
lexer, which lies at the basis of both techniques,
suffices to port it. Because more changes in the lexer
are necessary for the parameterizedline matching
technique, its portability is slightly lower than that of
the suffix tree technique. Both parameterized
techniques are fairly portable. The metric fingerprint
technique demands much configuration effort as it is
syntax dependent due to the use of a parser. Even in our
very first attempt to analyse a program, we were
confronted with this syntax dependence because it
failed due to a syntax error in the analysed code. The
use of a parser limits the technique to syntactically
correct sources of one language and makes changing to
other languages difficult.

What kind of matches are found?

A rough classification of the clones found yields: functional
block duplication and general duplication. Functional block
duplication characterises the duplication found by the metric
fingerprint technique. Because this technique characterises
functional blocks such as methods or code blocks by a
fingerprint, only code fragments which share a functionally
equivalent structure, are reported. The addition or removal of
struc-tures in a block violates this equivalence.

General duplication is found by the three other techniques.

Everything that was duplicated, including pre processor
directives or comments, can be detected by them.This last
category can eventually be subdivided into the different
fragments found by the corresponding tech-niques: duplicated
symbol blocks for the suffix tree technique, duplicated lines
block for parameterized line match-ing and equal lines for
simple line matching. Duplicated in this context refers to the
fact that parameter symbols may have changed.

How accurate are the results?

Number of false matches— No false matches are reported by
both simple line matching and parameterized matching using
suffix trees. Simple line matching reports only equal lines
which makes it impossible to have false positives, while
parameterized matching using suffix trees benefits from its
P-string encoding that enforces a strict one–to–one
parameterization. Only positive matches (parameterized or
exact) are found by them

Parameterized line matching allows a non systematic renaming
of the parameters which leads to few false matches. Such
systematic renaming is necessary to ensure that two fragments
share the same basis func-tionality which characterises
duplication. Figure 2 shows an example, discovered in
TextEdit. The problem especially seems to target GUI
initialisation code. However reporting fragments consisting of
a long se-quence of matching lines instead of shorter ones,
helps in keeping the number low. When we used this technique
for ScoreMaster and Brahms we did not receive any false
matches, while one false match was reported for Text
Edit.Even more false matches are reported by the metric
fingerprint technique. Applying metric fingerprints with block-
fragments resulted in over 200 false matches (cf. with 0 for the
other 3 techniques) while only two were found using methods
as fragments. The characterisation of expressions which lacks
accuracy (see figure 3 for an example in ScoreMaster), is
responsible for this problem. However it is our opinion that
adding better expression metrics, like “expression complexity”,
reduces this problem’s impact. Furthermore, less false matches
are found when the granularity or size of the selected fragments
is bigger. The number of false matches for this technique thus
depends on the way expressions are characterised and the
length of the fragments.

www.ijraset.com

I N T E R N A T I O N A L J O U R N A
E N G I N E E R

Figure 3. Example of a false match for metric fingerprints

Number of useless matches— The use of a threshold
both parameterized matching techniques, keeps the number of
useless matches low. Changing the threshold helped us in
keeping the number of useless matches below 20.

For the metric fingerprint technique more useless matches
reported. Most of them are only one to four lines long and are
caused because two method calls with the same number of
arguments always match. For TextEdit for example, we found
133 useless matches on 138 reported matches (137 of them were
valid matches) when we used method granularity. Using a
threshold would reduce the amount of useless matches,
especially in programs which contain many small methods or
code blocks.

Vol.

ISSN:

A L F O R R E S E A R C H I N A P P L I E D
R I N G T E C H N O L O G Y (I J R A S E T)

Page 165

re 3. Example of a false match for metric fingerprints

use of a threshold like in
both parameterized matching techniques, keeps the number of

. Changing the threshold helped us in
number of useless matches below 20.

more useless matches are
reported. Most of them are only one to four lines long and are
caused because two method calls with the same number of

or example, we found
133 useless matches on 138 reported matches (137 of them were
valid matches) when we used method granularity. Using a
threshold would reduce the amount of useless matches,
especially in programs which contain many small methods or

Simple line matching also reports many useless matches
same example as in the previous paragraph we got 229 useless
matches. The problem here is that any program already contains
some exactly matching lines by nature. As an example think
the “return;” statement you tend to write in your program. It is
hard to estimate the exact number of useless matches in general
but usually it is larger than the amount for metric fingerprints.

Numumber of recognisable matches—
technique the number is high. Each match that is returned is a
functional block like e.g. scope blocks and method definitions.

Both parameterized matching techniques return a
of recognisable matches. It is difficult to decide which matche
are important by just looking at the output because each match
represents a chunk of duplicated lines or symbols, which lacks
context.The number of recognisable matches for simple line
matching is even lower (reduced from 4 with param
matching to 2). All exactly matching lines are reported.
Visualisation can be used to detect the interesting duplicates.
However the lack of parameterization makes it more difficult
than the parameterized techniques to detect altered

How does it perform

Because the actual performance of a technique depends on many

factors like implementation and testing platform, we started by

calculating the theoretical time complexities. For both line

matching techniques this results in a time complexity of O(n

because each line is compared with each other line resulting in

an exponential complexity. Using Ω hash buckets as proposed in

2 Issue VIII, August 2014

N: 2321-9653

D S C I E N C E AN D

many useless matches. For the
same example as in the previous paragraph we got 229 useless
matches. The problem here is that any program already contains
some exactly matching lines by nature. As an example think of
the “return;” statement you tend to write in your program. It is
hard to estimate the exact number of useless matches in general
but usually it is larger than the amount for metric fingerprints.

For the metric fingerprints
. Each match that is returned is a

like e.g. scope blocks and method definitions.

Both parameterized matching techniques return a lower number
of recognisable matches. It is difficult to decide which matches
are important by just looking at the output because each match
represents a chunk of duplicated lines or symbols, which lacks
context.The number of recognisable matches for simple line

(reduced from 4 with param-eterized
o 2). All exactly matching lines are reported.

Visualisation can be used to detect the interesting duplicates.
However the lack of parameterization makes it more difficult

ed techniques to detect altered duplicates.

Because the actual performance of a technique depends on many

factors like implementation and testing platform, we started by

calculating the theoretical time complexities. For both line

matching techniques this results in a time complexity of O(n2)

because each line is compared with each other line resulting in

an exponential complexity. Using Ω hash buckets as proposed in

www.ijraset.com Vol. 2 Issue VIII, August 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 166

[8] reduces this complexity to O(n
Ω

2). Parameterized matching

using suffix trees on the other hand, has a complexity of O(|Π|

∗n) (with |Π| the number of parameter symbols) as was formally

proven by Baker in [2]. As a last technique we studied the time

complexity of the metric fingerprint technique which shows a

time complexity of O(m2) when a simple comparison is used to

compare the m fragments.

Afterwards we compared these complexity formulas with the

execution times we measured3 leading to a couple of rather

interesting observations. A first observation was the problem of

page swapping. From a certain point (in our experiment 10 000

LOC) the linearity of the suffix tree could no longer be

maintained. The reason for this was the page swapping which

was necessary to store the whole suffix tree in memory.

Memory space is thus a constraining factor when analysing

large projects.A second observation was the unexpectedly high

performance of the parameterized line matching technique. The

execution time of this technique showed a very flat exponential

tendency. Better memory use and shorter comparisons due to

shorter strings, are reasons for that performance.

Figure 4 shows how the execution time for each technique
relates to the input size. It clearly shows our two observations as
well as an overview of each technique’s performance.

5. INTERPRETATION

A first observation we made was in scalability of the various

techniques. By applying each tech-nique on a common case, we
were able to get in touch with the scalability of the different
techniques, something we could not derive from the theoretical
time complexities alone. Who could ever imagine that the
relative exe-cution time of parameterized line matching
increases much slower than its simple counterpart while an
additional transformation is applied? During our experiment we
were certainly puzzled by the major difference in execution time
(2 minutes versus 8) for the suffix tree technique when
advancing from 7500 LOC to 10710 LOC, certainly because a
linear time complexity was formally proven for this technique.
As analysis of the memory showed, page swapping was the
reason for this behaviour. By experimenting we found that
parameterized matching using suffix trees has problems
sustaining its theoretical linearity due to memory restrictions
which in turn limits its scalability. For the comparison of the
output of the techniques, we also used a visualisation tool. Quite
often this visual comparison showed striking differences in the
outputs. At one moment for example, we were really stunned by
the large amount of matches reported when we used block–
fragments instead of method–fragments in the metric fingerprint
technique. However our amazement was of short notice because
investigation of the various fragments revealed a large number
of false and useless matches. Comparison with other techniques
supported this idea immediately. Using block-granularity for
metric fingerprints did not only cost much more time and
memory, but also resulted in a large amount of useless
information. After this we immediately compared the method-
granularity with the remaining techniques. The number of
matches drew our immediate attention as metric fingerprints
finds a number of very small (1 or 2 lines), yet useless matches.
However, the remaining large matches were duplicated
methods, which usually are easy to refactor. The limited amount
of matches combined with their clear content makes the
technique useful in a first, coarse refactoring phase. At first
sight, the parameterized techniques and simple line matching
seemed to report different duplicates, while the difference in
output between our two parameterized techniques was small.
However, a second more in-depth look at the reports revealed
that sometimes very small matches were found by simple line

www.ijraset.com Vol. 2 Issue VIII, August 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 167

matching while the parameterized techniques found an entire
fragment. A small amount of duplicates was not even found by
simple line matching because in each line at least one parameter
symbol was altered. This indicates that some very detailed
duplication was missed. Applying parameterized matching
resulted in more detailed and more recognisable matches.

6. CONCLUSION

In this paper we have studied three duplicated code
detection techniques, which are representative for the
techniques published in the literature. By means of five
small to medium cases (some of them including generated
code, hence having lots of duplication) we compared the
results, focussing on those portions where the techniques
performed differently. Based on this experiment, we make
the following conclusions.

• Simple line matching (representative for the string-based
techniques) gives a crude overview of the dupli-cated
code that is quite easy to obtain, hence is most
appropriate during problem detection and problem
assessment.

• Parameterized matching (representative for the token-
based approaches) provides a precise picture of a given
piece of duplicated code and is robust against rename
operations. Therefore it works best in combination with
fine-grained refactoring tools that work on the level of
statements (i.e. Extract Method, Move Behaviour Close to
Data, and Transform Conditionals into Polymorphism.

• Metric fingerprints (representative for the parse-tree
based techniques) are very good at revealing duplicated
subroutines, irrespective of small differences, hence work
best in combination with refactoring tools that work on
the method level (i.e. Remove Method and Pull up
method);

These results are preliminary in nature and should be
confirmed by other experiments. First of all, future experiments
should incorporate large and very-large (over a million lines of
code) programs into the set of cases to see whether our results
still hold. Secondly, the same experiment should be done with

other techniques to see whether our findings indeed generalise
across the given categories.Despite these limitations, we have
shown that the different clone detection techniques reported in
the literature each have specific advantages compared to the
others. As such, each technique is more appropriate for a certain
maintenance task. In that sense, this paper laid the foundation
for a more systematic way of detecting and removing duplicated
code.

7. ACKNOWLEDGEMENTS

We would like to thank Gerd Van Den Heuvel, whose master’s
thesis provided the necessary means for con-ducting the
experiments described in this paper. We also would like to thank
Stephane´ Ducasse, Bart Du Bois and Andy Zaidman for
reviewing the paper. Matthias Rieger was helpful by providing
us with an implementation of Duploc.

REFERENCES

[1] Brahms. http://brahms.sourceforge.net. by Sourceforge.

[2] B. Baker. On finding duplication and near-duplication in
large software systems. In Working Conference on
Reverse Engineering 1995, 1995.

[3] V. R. Basili and H. D. Rombach. The tame project:
Towards improvement–oriented software environments.
IEEE Transactions on Software Engineering, 14(6):758 –
773, 1988.

[4] I. Baxter, A. Yahin, L. Moura, and M. S. Anna. Clone
detection using abstract syntax trees. In International
Conference on Software Maintenance, 1998.

[5] E. Burd and J. Bailey. Evaluating clone detection tools for
use during preventative maintenance. In Second IEEE
International Workshop on Source Code Analysis and
Manipulation(SCAM ’02), October 2002.

[6] J. B. D. Roberts and R. E. Johnson. A refactoring tool for
smalltalk. Theory and Practice of Object Systems
(TAPOS), 3(4):253 – 263, 1997.

