

2 IX September 2014

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 77

Operating System Challenges for GPU Resource
Management

Jyoti Chandel1, Neha Gupta2, Jyoti Yadav3

Dronacharya College of Engineering,
Gurgaon, HR

Abstract: The graphics processing units(GPU) have rapidly evolved to become high performance accelerators for data-
parallel computing. For accelerating graphics and data-parallel compute-intensive applications the GPU is a most popular
platform. As technology stands today , the GPU is the most well-suited platform. GPUs can accelerate the processing speeds
significantly. It significantly outperforms traditional multi-core processor in performance and energy efficiency. The efforts
of GPU resource management for multitasking environments are lacking models, designs and implementation.

This paper identifies a GPU resource management model to provide a basis for operating systems research using GPU
technology .We present design concepts for GPU resource management. In this paper, we discuss about the list of operating
system challenges for GPU resource management. The specific idea of GPU scheduling is for real-time system. Our
primary evaluation demonstrate that the performance of open-source software is competitive with that of proprietary
software , and hence operating systems research can start investigating GPU resource management.

I. INTRODUCTION

The major concerns for today's computer systems are
performance and energy . GPUs have become a very
powerful platform embracing a concept of heterogeneous
many-core processors. Since the 1960s processors have
shown an exponential improvement in performance fueled by
advances in semiconductor technology , allowing to increase
the clock speed and architecture innovations increasing the
amount of workdone per cycle. In the early 2000s, chip
manufacture had competed

on

processor clock rate to

Figure 1.Performance trends on the Well-known GPU and
CPU Architectures.

continue the performance improvements in their product lines
.In 2002 the Intel Pentium 4 processors was the first
commercial product that exceeded a clock rate of 3GHz.
Since about 2005 this exponential growth of single-core
performance has significantly flattened out. This paradigm

www.ijraset.com

I N T E R N A T I O N A L J O U R N
AN D E N G I N E E

shift was a break through to achieve high performance with
low energy .Figure 1 illustrates the performance trends on the
well-known GPU and CPU architecture from NVIDIA and
Intel[1]. Latest GPUs contains 100s of microprocessor, ability
of achieving up to one TFLOPS for single
arithmetic and over eighty GFLOPS for dual
calculations. The GPU is the most well-suited platform for
today's technology .In the future product lines of BMW
vehicles will used NVIDIA GPUs for infotainment systems

The advantage of GPU is non-trivial performance
which comes from hundreds of processing core integrated on
a chip. The CPU is also less preferable than the GPU in
performance per watt. Specifically, the CPU is about 7times
less energy-efficient than the GPU today.

The TOP500[12] supercomputing sites declared in Nov ,2011
that three of the top five supercomputers comprise GPUs
Clusters and also provide performance improvement for
scientific applications. The GPU also provide the benefit of
large-scale storage systems. The ASUS Eee Pad Transformer
Prime ,also leverage embedded GPUs to expand the
Performance under power constraints. In the implant system
domain, a latest design of Camegie Mellon's autonomous
vehicle[8] provides four NVIDIA's GPUs to raise its
computing power required for autonomous driving tasks,
including vision-based perception and motion planning.
number of parallel algorithms such as vehicle planning, sensor
fusion, computer vision and graphics sub

Vol. 2 Issue I

ISSN: 2321-9

N A L F O R R E S E A R C H I N A P P L I E
E R I N G T E C H N O L O G Y (I J R A S E T

shift was a break through to achieve high performance with
Figure 1 illustrates the performance trends on the

architecture from NVIDIA and
test GPUs contains 100s of microprocessor, ability

of achieving up to one TFLOPS for single-precision
arithmetic and over eighty GFLOPS for dual-precision

suited platform for
oday's technology .In the future product lines of BMW[11]

vehicles will used NVIDIA GPUs for infotainment systems.

trivial performance
which comes from hundreds of processing core integrated on

so less preferable than the GPU in
performance per watt. Specifically, the CPU is about 7times

supercomputing sites declared in Nov ,2011
that three of the top five supercomputers comprise GPUs
Clusters and also provide performance improvement for

The GPU also provide the benefit of
S Eee Pad Transformer

,also leverage embedded GPUs to expand the
In the implant system

domain, a latest design of Camegie Mellon's autonomous
provides four NVIDIA's GPUs to raise its

uired for autonomous driving tasks,
based perception and motion planning. A

number of parallel algorithms such as vehicle planning, sensor
-systems must

operate and coordinate in real-time so that v
become semi autonomous and fully autonomous eventually. A
case study from Stanford disclose that the GPU can speed up
computer vision applications for autonomous driving by 40
times compared to CPU execution. The GPGPU
as a rapid growth of general-purpose computing on GPUs
which is supported by recent advances in programming
technology authorize the GPU to be used easily for general
"compute" problems.

GPU resource management get very limited support from
Operating System in commodity software of operating
systems. Some of the multi-tasking, such as fairness,
prioritization and isolation are not supported at all. The
research society has implement various approaches to GPU
resources management recently. Our research paper iden
various ways towards operating systems challenges for GPU
resources management .A critical issue for GPU resource
management is to explore system design and implementation
with missing information in open-source software. We present
potential solutions and initial ideas to these open problems in
this paper.

II. OUR SYSTEM ASSUMPTION

This paper contemplate on a system composed of a GPU and
a multi-core CPU. Various GPU architecture are present today
. While many established microprocessor format is
the X86 CPU architecture suitable across many years. To
change GPU architecture designer need lots of year. Fermi
architecture was released by NVIDIA
support both computer and graphics program. Fermi
architecture is the main focus of this paper but the concept is
also applicable to other architecture . On
assumed.

A new X86 -based architecture is provided by Intel, which
integrate the GPU on a chip, GPUs on a board are still more
popular today . The CPU and GPU
that we assume in on-board GPU model . Or we can say that
GPU contexts and CPU contexts are separately processed.
The piece of code is offloaded from the CPU when
programs launch that code onto the GPU to get accelerated.

IX, September 2014

9653

E D S C I E N C E
T)

time so that vehicles can
become semi autonomous and fully autonomous eventually. A
case study from Stanford disclose that the GPU can speed up
computer vision applications for autonomous driving by 40
times compared to CPU execution. The GPGPU[10] is known

purpose computing on GPUs
by recent advances in programming

technology authorize the GPU to be used easily for general

GPU resource management get very limited support from
commodity software of operating

tasking, such as fairness,
prioritization and isolation are not supported at all. The
research society has implement various approaches to GPU
resources management recently. Our research paper identifies
various ways towards operating systems challenges for GPU
resources management .A critical issue for GPU resource
management is to explore system design and implementation

source software. We present
tions and initial ideas to these open problems in

OUR SYSTEM ASSUMPTION

This paper contemplate on a system composed of a GPU and
core CPU. Various GPU architecture are present today

. While many established microprocessor format is based on
suitable across many years. To

change GPU architecture designer need lots of year. Fermi
architecture was released by NVIDIA[3] in 2011 which
support both computer and graphics program. Fermi

us of this paper but the concept is
also applicable to other architecture . On-board GPU is also

based architecture is provided by Intel, which
integrate the GPU on a chip, GPUs on a board are still more

operate asynchronously
board GPU model . Or we can say that

GPU contexts and CPU contexts are separately processed.
code is offloaded from the CPU when the user

programs launch that code onto the GPU to get accelerated.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 79

III. PROGRAMMING MODEL

To accelerate a particular program code we use the GPU
device rather than CPU device. The user program start the
execution on the CPU and forward the piece of code to GPU
kernels and after that it get accelerated. The user program take
at least three major steps to accelerate on the GPU.

1. Memory Allocation: The memory allocation of user
programs are required for computation. The GPU has several
types of memory are shared ,local , global, constant and heap.

2. Data Copy: The GPU Kernel starts on the GPU after the
input data copy from the host to the device memory . To

return the computed result to user programs the output data
is copy back from the device to the host memory.

3. Kernel Launch: The GPU itself is not a control unit as
GPU-accelerated program code must be launched from the
CPU to the GPU at runtime.

The memory-allocation phases must manage the device
memory address regions available for each request. We need
to access the GPU to move data between the host and the
device memory and Launch the GPU program code. A brief
execution flow of GPU-

accelerated matrix multiplication shows in figure2 example,
i.e., A[] × B[] = C[] . The GPU program code image must be
loaded on the main memory. An output buffer C[] may be
empty, while two input buffers A[] and B[] hold the valid
values for computation. At the beginning , usually uploaded
the kernel image. The device memory used to allocate data
in it and the GPU uses this for data access. The PCI bus is
used to copy the input buffers onto these allocated data spaces
on the device memory. The GPU kernel starts execution, after
the input data was ready on the device memory. Usually the
output data are copied back onto the main memory. This is a
generic flow to accelerate the program on the GPU.

IV. RESOURCE MANAGEMENT MODEL

In this part, we show a primary level model of GPU resource
management, especially along with the Linux system stack,

accommodating Path scale's open source driver, NVIDIA
proprietary driver and Linux is open-source driver. NVIDIA
can share about 85% of code between Linux and Windows,
since Windows Display Driver Model(WDDM) also
applicable to our model. The NVIDIA's Fermi architecture is
also conceptually applicable to most of today's GPU
architecture.4.1 System stack A set of GPU commands to
enable the device driver and the user-space runtime engine to

control

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 80

data copies and kernel launches is defined by GPU
architecture. The device driver supply primitives for user-
space programs to send GPU commands to the GPU and the
user-space runtime engine issue a specific API to write user
program, abstracting the low-level primitives at the device
driver. The device driver and run-time engine use ioctl system
call to interface between them. The system stack in our GPU
resource management model is illustrates in figure 3. The
runtime engine provides applications call API library
functions.

4.2 GPU Channel Management

The GPU channels are managed by the device driver.

An interface that bridges across the CPU and GPU contexts is
GPU channel which is used to send the GPU commands from
the CPU and the GPU. The support of 128 channels is present
in the NVIDIA's Fermi[3] architecture for an instance. How
to submit GPU commands to the GPU within a channel is
illustrate in figure4. To store GPU commands the GPU
channel uses two types of buffers in the operating-system
address space. The device driver directly use the buffer to
send specific GPU commands that control the GPU, such as
initialization, channel synchronization and mode setting. The
GPU command groups occur when the GPU commands are
grouped into multiple units.

4.3 GPU Context Management GPU contexts consist of two
register are memory-mapped I/O registers and Hardware
registers which must be initialized by the device driver at the

beginning. The hardware register need GPU sub-units to be
read and write, but the memory-mapped I/O registers can be
directly read and write by the device driver through the PCI
bus. For accessing the

context
values there are multiple ways. Several hardware units are
provided by the GPU to transfer data among the main
memory, the device memory and GPU registers in a burst
manner. A conceptual model of how to manage the GPU
context is illustrates in figure5. The device memory store the
GPU context but the main memory store the one-time
accessed data. The microcontroller also contain memory
space where some accessed data by GPU context are stored.
To manage such data DMA transfer is needed.

4.4 Memory Management

At least three address spaces are associated for GPU
applications in memory management. Given that the CPU
starts the user program and the user-space virtual memory
create the user buffer on the host memory. The operating-
system virtual memory copied that buffer, since the device
driver must access it to transfer data onto device memory. The
POSIX standard as the mmap system call is supported by
memory-mapped buffer. The user program can use memory-
mapped buffer quite flexibly. The user-space virtual memory,
operating-system virtual memory and GPU-Kernel virtual
memory are the three address spaces associated with memory
management.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 81

V. OPERATING SYSTEMS CHALLENGES

In this part, we examine the operating systems challenges for
GPU resource management. The following discussion is
based on our favourite research perspective but it does not
cover the complete area of GPU resource management. The
following discussion will lead to the ideas of where we are at
and where to go .

5.1 GPU Scheduling

The scheduling of GPU is the most important task to hold the
GPU in multi-tasking environments. The GPU kernel
program are executed in first-in-first-out (FIFO) manner just
because of GPU Scheduling is not done. A response time
problem also caused due to the absence of GPU scheduling
support. The GPU has been idle when the first launch of the
high-priority task is serviced . The preceding executions of
GPU contexts launched by the low-priority task after the
second and third launches of the high-priority task are
blocked. Due to the nature of FIFO dispatching this blocking
problem appears. The solution of this problem is scheduling
the GPU appropriately .

5.2 GPU Clustering

For clustering multiple GPUs is the another challenge of
operating systems. To use GPUs for HPC application the
GPU clustering[4] is the only way. These applications are
compute-intensive as well as data-intensive. Most of the GPU
clusters are hierarchial.

On-board GPU clusters: On board management of multiple
GPUs may be either in the user-space runtime or the
operating system.

Networked GPU clusters: The network is more challenging
due to the management of multiple connected GPUs
networking.

5.3 GPU Virtualization

The useful techniques widely adopted in many application
domains to isolate clients in the system and make the system
compositional and dependable is Virtualization[13]. The

support has been provided by run-time engines, VMMs and
I/O managers in the literature in GPU virtualization. The
different guest operating system which are installed in VMs is
the major concern for GPU virtualization. The different
firmware images and assumptions are used in different guest
operating systems by GPU device drivers.

5.4 GPU Device Memory Management

The user programs is allocated in the device memory spaces
which are typically pinned. The allocatable memory size is
limited to the device memory size. So, it is not an efficient
memory management model. Virtual memory to isolate
address spaces among GPU channels is supported by GPU.
The functionality of this virtual memory is to expand the
allocatable device memory which is utilized by the operating
systems.

5.5 Coordinate with Runtime Engines[16]

The GPU command groups issued from user-space programs
control the GPU operations. The user program is activated by
a specific sets of GPU commands when the GPU kernel
launches and data copies between the host and device
memory. The types of GPU commands are issued from user-
space programs does not recognize by the operating system.
To obtain such information from user space program , an
interface is provided to the operating system.

VI. CONCLUSION

In this paper, we have presented the numbers of challenges
which are offered by operating system for GPU resource
management . We have also discuss about the state of art in
GPU resource management . GPU technology has high
performance and energy efficient due to which it start
promising in many application domains. This paper identified
core challenges for operating systems research to efficiently
use the GPU in multi-tasking environments and also provide
some insights into their solutions. As our understanding
progresses the identified list of challenges needs to expand .
The additional timing issues need to address in real-time
system. We believe that this paper encourage all of you to
known about a grander vision of GPU technology.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 82

REFERENCES

[1]. Intel. IntelMicroarchitecture Codename Sandy Bridge.
http://www.intel.com/.
[2]. NVIDIA. Linux X64 (AMD64/EM64T) Display Driver.
http://www.nvidia.com/.
[3]. NVIDIA. NVIDIA’s Next Generation CUDA Compute
Architecture:Fermi (Whitepaper).
http://www.nvidia.com/content/PDF/fermi white
papers/NVIDIA Fermi ComputeArchitecture Whitepaper.pdf.
[4]. Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stove, “GPU
Cluster for High Performance Computing,”, in Proc.
ACM/IEEE conference onSupercomputing, 2004.
[5]. D. Roeh, V. Kindratenko, R. Brunner, “Accelerating
Cosmological Data Analysis with Graphics Processors,” in
Proc. 2nd Workshop on General-Purpose Computation on
Graphics Processing Units, 2009.
[6]. J. Ferreira, J. Lobo, and J. Dias. Bayesian real-time
perception algorithms on gpu. Journal of Real-Time
Image Processing, 6:171–186, 2011. 10.1007/s11554-
010-0156-7.

[7]. T. Kelly. Bmw self driving car: Carmaker shows off
hands-free car on autobhan, 2012.

[8]. J. Markoff. Google cars drive themselves, 2010.

[9]. S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
TimeGraph: GPU Scheduling for Real-Time Multi-Tasking
Environments. In Proceedings of the USENIX Annual
Technical Conference, 2011.
[10]. S. Kato, K. Lakshmanan, A.kumar,Y.Ishikawa, and R.
Rajkumar. RGEM: A Responsive GPGPU Execution Model
for Runtime Engines. In Proceedings of the IEEE Real-Time
Systems Symposium, pages 57–66, 2011.
[11]. NVIDIA Press. NVIDIA GPUs to Be the Infotainment
Centerpiece Across BMW’s Next-Generation of Cars.
http://pressroom.nvidia.com/easyir/customrel.do?easyirid=
A0D622CE9F579F09&version=live&prid=704317&releasejs
p=release_157&xhtml=true , seen on March 7th, 2012.
[12]. Top500 Supercomputing Sites. http://www.top500.

org/.
[13]. M. Dowty and J. Sugeman. GPU Virtualization on
VMware’s Hosted I/O Architecture. ACM SIGOPS Operating
Systems Review, 43(3):73–82, 2009.

[14]. K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321–359, 1989.
[15]. P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J.
Kuffner, and T. Kanade. GPU-accelerated Real-Time 3D
Tracking for Humanoid Locomotion and Stair Climbing. In
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 463–469,2007.
[16]. M. Bautin, A. Dwarakinath, and T. Chiueh. Graphics
Engine Resource Management. In Proceedings of the Annual
Multimedia Computing and Networking Conference, 2008.
[17]. A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and
M. Ripeanu. A GPU Accelerated Storage System. In
Proceedings of the ACM International Symposium on High
Performance Distributed Computing, pages 167–178, 2010.

