

5 VII July 2017

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VII, July 2017- Available at www.ijraset.com

 198 ©IJRASET (UGC Approved Journal): All Rights are Reserved

 Study On SQL Injection Attacks: Detection
And Prevention

Rishab Garg1, Priya Gupta2, Rohan Kr Sachdeva3
1,2,3 School of Information Technology, Vellore Institute of Technology Vellore, India

Abstract: SQL injection also referred to as SQLI in short. It is the most dangerous way in which our data can be hacked.
Hackers can get to our databases prudently through Web Interface and can delete, modify the important content of
database. The principle behind SQL Injection is very simple, but utter dangerous and powerful. When the application
takes input from user through any form etc. the malicious users get opportunity to enter the diligently crafted data which
will be interpreted as the SQL query instead of the data. This query will extract the database details and will let the doors
wide open for the opportunists to misuse the data. Not only database modification of database, this will let the hackers to
get unauthorized access to the application services also. Injection attack is at the first place of the top 10 web attacks
that are executed in 2013. SQL injection is a method for exploiting web applications that use client supplied data in SQL
queries. SQL Injection refers to the technique of inserting SQL meta characters and commands into Web based input
fields in order to manipulate the execution of the backend SQL queries. The occurrence of SQLI is triggered when
hacker changes the functioning of query by inserting SQL commands. Our goal is to implement different SQLI attacks
and through the results we will see how important data is compromised by changing the query. This loss of data can
cause a company to lose in millions. We will try to analyse various attacks in order to get an in depth knowledge of how
these attacks work.

 Keywords: SQLI; intrusion; attacks; database; scanning; vulnerability;

I. INTRODUCTION
The intruder of the SQLIA attack has the main goal to access the database for which he is not authorised. In today’s modern
digital world more and more companies are reliant on the use of web applications for distribution of services to the users. These
applications receive the users or clients request which in turn interacts with the back-end database and returns relevant data for the
user. These database mostly contains the confidential and sensitive information of users such as their personal, medical and financial
data in which the attackers has keen interest. SQLI is the main attack used by attackers to exploit and compromise the security of the
database. It exploits vulnerabilities that exists in the back-end database server which allows hackers to inject a malicious payload of
SQL query segments to manipulate the effect of the SQL query, which gives the attackers access to database, read or modify or
maybe corrupt the whole database server.
However, there doesn’t exist a single complete solution that can solve all the problem that are prevalent today. This paper provides
us with the focus on various concepts of SQLI. Section II gives us the idea of various detection and prevention techniques and other
work done previously in this field. Section III contains the procedure for the detection of the given SQL attack and what it signifies.
Section IV is all about SQLIA Tools Analysis followed by Section V SQLIA Prevention. Then Section VI is Future work and
then Section VII Conclusion.

Fig. 1. Generic Request-Reply Architecture

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VII, July 2017- Available at www.ijraset.com

 199 ©IJRASET (UGC Approved Journal): All Rights are Reserved

II. RELATED WORK
On reviewing many electronic journals and articles from ACM, IEEE, and host of other websites to know in depth about the various
SQLI attacks the following papers covers different important aspects or techniques to prevent SQLI attacks:
A. From “Using Parse Tree Validation to prevent SQLI attacks” ACM, SQLI discovery was covered and the paper discussed

various aspects of SQL parse tree validation.[1]
B. From “The Essence of Command Injection Attacks in Web Applications” ACM, various techniques to check and prevent input

query which uses SQLCHECK and grammar to validate query. [2]
C. From “Using Automated Fix Generations to Secure SQL Statements” IEEE, the background of SQL statement and vulnerability

was covered.[3]
D. From “Automated Protection of PHP Applications against SQLIA” the method originally used to secure application from

SQLIA is covered which puts together static analysis, dynamic analysis, and automatic code re-engineering to protect existing
properties.[4]

E. From “Preventing SQLI attacks in stored procedures” a simple approach to secure the stored procedures from attack and detect
the SQLIA from site. It combines runtime check with static application code analysis so the vulnerability of attack can be
eliminated. It changes the structure of the original SQL statement and detects the SQLIA. This method is further divided into
two phases, one deals at offline and other at runtime level. In offline phase, parsing, pre-processing and detection of SQL
statements is done by stored procedures in the runtime analysis of execution call. In final runtime phase the user input structure
is checked with original structure of statement by the process. Once it detects the malicious payload the access is denied and the
details about attack is sent back.[5]

III. SQLIA DETECTION
A. Introduction
This section discusses techniques to detect SQLI attacks against an organizations network. There is an ample amount of
discussion on this and how to carry them out, their impact, and the prevention techniques using improved and efficient coding
and design practise. We take popular open source tools for detecting these attacks.

B. Open Source Tools
There is a grave need to detect the SQLI attacks, to achieve this these are few enumerated open source tools which are capable
of scanning and detecting the attacks:
1) Acunetix Web Vulnerability Scanner Tool[25]: This tool works on the idea of splitting the attack in the basis of severity. It

classifies the attacks as low, medium, hih and informational severity. The tool is capable of detecting web vulnerabilities
like SQL injection, URL redirection, Firewalls and SSL, CGI scripting, Cross site scripting.

Among these SQL injection attacks and Cross site scripting scans belong to the high threat label as they are very severe form of
attacks.
This scanner tool does a fairly efficient scanning but is found to be slow than other commercial scanning tools in the market.
2) SQL Map[24]: A python application SQL Map is a dedicated SQL injection scanner. The tool aims to detect the SQLI

attacks vulnerabilities and it feeds on these outcomes to take advantage on web applications. SQL Map initially detect the
loop whole in you site and then use variety of option to perform extensive back-end database management, enumerate
users, dump entire or specific DBMS, retrieve DBMS session user and database, read specific file on the file system.

The tool is quite fast than the former mentioned Acunetix, but it still not the best. It also make very few URL injection
database as compare to other tools like SQLiX. This tool also doesn’t have GUI interface.
3) Wapiti[23]: Another python based application tool to detect SQLI. This tool uses command line of Python and relies on its

library named Iswww. The library facilitates the tool to crawl on the given website in order to scan it, similar to web
crawling. It also uses library like Tidy to clean the HTML pages which are not well formatted. Basically it does black-box
scanning. Wapiti scans the all Web Pages available on your site and try to find out scripts and form where it can inject data to
check how many types of attack are possible on selected injection point.

Wapiti can detect SQL injection and XSS (Cross Site Scripting) injection. Wapiti has one of the best features that it’s able to
differentiate temporary and permanent XSS vulnerabilities. It does not provide a GUI interface and you must have to use it
from command line interface.
4) Paros[30]: A web application used for web application security assessment. This comparing to its contemporaries is a

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VII, July 2017- Available at www.ijraset.com

 200 ©IJRASET (UGC Approved Journal): All Rights are Reserved

JAVA application used to evaluate the web pages and their securities. It is open source free application, using Paros’s one can
exploit and modify all HTTP and HTTPS data among client and server along with form fields and cookies. The core function
what this scanner Paros does is explained as follows. According to web site hierarchy, it scans the server, then it checks for
server misconfiguration. This is added feature because few URL paths cannot be found and recognized by the crawler.
The other automatic scanners are not able to do that.

Basically to be capable of this functionality Paros navigates the URL site and rebuilds the website hierarchy. Paros does three types
of server configuration checks as HTTP PUT, Directory indexable, and obsolete file exist. Paros also provides log file, which is
create when all the HTTP request and reply pass through Paros. In log panel Paros shows back as request and reply format.
5) Pixy[29]: Pixy is the second tool that is written in Java. Pixy can do automatic scans for PHP and also does for the

detection for SQL injection and XSS attacks. Pixy functions by taking whole PHP file as an input and producing a report
that shows the possible vulnerability section in that PHP file along with some additional information to understand attack. The
major disadvantage of Pixy is that it only woks for PHP 4 and not for OOPHP 5.

While SQL injection analysis Pixy divides result in three categories: untainted, weakly tainted, and strongly tainted. It also provide
dependence graph and dependence value. Dependent value is nothing but the list of points in program on which the value
of variables is depends.
6) SQLIX[20,21]: SQLIX is another SQL injection scanner developed as OWASP(Open Web Application Security Project)

project. Talking about OWASP, it is a free and open worldwide community, which focusses on improving application software
security. It’s based on an Perl Scanner, which identifies the vulnerability of the back-end database, crawls and detects an SQLI
attack. Various Perl modules are used by SQLIX. Comprehensive Perl Archive Network (CPAN), CPAN, provides an ample
amount of Perl software as well as their documentation, which helps any coder to use these libraries and Perl modules in their
projects.

As we go one to learn about SQLIX we imbibe that SQLIX is not merely a scanner for injections but has very interesting and
important feature of building our own function. Our own function can be deployed to inject malicious code into the database and
carry out tests for different vulnerabilities. This feature is not available in any other vulnerability scanners available in market. The
intriguing feature helps us in preparing for all kind of possible SQLI attacks. Also instead of giving main URL in command line
interface for crawl, we can list the number of Main URLs which we wish to crawl in one file and then call that file. SQLIX involves
various modules which determines it’s performance factor as discussed in this paragraph:
Crawl is a Perl module to crawl by specifying target and crawl through all the web pages and forms present in that specified
URL. The crawler needs Spider.pm Perl module to browse the entire webpage build on the URL. The Mechaniz.pm Perl module,
this module handles the job of collecting the URLs to proceed for further process. It is a crucial role and forms the heart of SQLIX
tool. Checksite.pm module to check and validate the URL which is present on the website page. The process involves first
validating and then stacking on for SQLI operation

IV. SQLIA TOOLS ANALYSIS
This section is all about, the various tools discussed above here are analysed and identified over certain parameters. The table
below shows the values of each tool against particular parameters.

TABLE I
VALUE OF EACH TOOLS

To visualize the table following are the by histograms. The x axis bears tools as in the manner given in the table:

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VII, July 2017- Available at www.ijraset.com

 201 ©IJRASET (UGC Approved Journal): All Rights are Reserved

A. Depending Upon the Number of Injections by the Tool

Fig.2. No. of Injection Injected by Tool

B. Depending Upon the Time Taken by the Tool

Fig.3. Time Taken by Tool

C. Depending Upon the Type of Attacks Done by the Tool

Fig.4. Type of Attacks Done by Tool

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VII, July 2017- Available at www.ijraset.com

 202 ©IJRASET (UGC Approved Journal): All Rights are Reserved

D. Depending Upon the Number of Database Supported by the Tool

Fig.4. Types of Database Supported by Tool

V. SQLIA PREVENTION
Every time the code differs when we are preventing the SQLA. There are many ways to do it. Some of them are described in this
paper. The Code depends on the coder. Here are some ways how we can do it:

A. SQLIA Prevention by Stored Procedure [18]
Stored procedures are like subroutines which can be called by the running applications. The prevention is implemented by the two
analysis: they are static and dynamic analysis. Stored procedure parser is used to identify the commands. The runtime analysis does
the input checking giving by the user using the SQL checker. This paper deals with the introduction, detection and prevention of the
SQL injection attacks. Prevention includes the combination of static and runtime analysis.

B. Adaptive Algorithm [19]
This method comprises of the code conversion methods and the top features of the parse tree validation methods. This algorithm
parse the input of the user and verify whether it’s prone to danger or not. If the parser detects any danger in the commands then it
will use the code conversion techniques and change the input of the user.

C. Comparison
Our main agenda is to increase the efficiency of the prevention algorithms so that the SQLI attacks can be reduced or diminished.
Table below shows the ways the different prevention techniques are used against the attacks and their efficiency comparison with
each other. This table shows the result of the comparison. These comparisons are useful for us in order to choose the prevention
algorithms:

TABLE II
EFFICIENY OF VARIOUS TECHNIQUES

D. Advantages of Static Analysis
Firstly the query which does not take user input is not included in the SQL graph(control) and also SQL control graph representation
counts towards the queries which includes user input to access the database.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VII, July 2017- Available at www.ijraset.com

 203 ©IJRASET (UGC Approved Journal): All Rights are Reserved

VI. CONCLUSION
This paper covered what we initially talked about the SQLI and its various detection and preventive approaches with their
performance evaluation. As the future work, we want to evaluate methods using different web based application script with public
domain to achieve great accuracy in SQL injection prevention approaches. Integrating SQLIX with http scanner, http scanning and
using metasploit will help in detected upcoming vulnerabilities. we also need to add feature to dump old database. This paper
covered what we initially talked about the SQLI and its various detection and preventive approaches with their performance
evaluation.

REFRENCES
[1] Wei, K., Muthuprasanna, M., & Suraj Kothari. (2006, April 18). Preventing SQL injection attacks in stored procedures. Software Engineering IEEE

Conference. Retrieved November 2, 2007, from http://ieeexplore.ieee.org
[2] Thomas, Stephen, Williams, & Laurie. (2007, May 20). Using Automated Fix Generation to Secure SQL Statements. Software Engineering for Secure

Systems IEEE CNF. Retrieved November 6, 2007, from http://ieeexplore.ieee.org
[3] Merlo, Ettore, Letarte, Dominic, Antoniol & Giuliano. (2007 March 21). Automated Protection of PHP Applications Against SQL-injection Attacks.

Software Maintenance and Reengineering, 11th European Conference IEEE CNF. Retrieved November 9, 2007, from http://ieeexplore.ieee.org
[4] Wassermann Gary, Zhendong Su. (2007, June). Sound and precise analysis of web applications for injection vulnerabilities. ACM SIGPLAN

conference on Programming language design and implementation PLDI, 42 (6). Retrieved November 7, 2007, from http://portal.acm.org
[5] Friedl's Steve Unixwiz.net Tech Tips. (2007). SQL Injection Attacks by Example. Retrieved November1,2007,from,http://www.unixwiz.net/techtips/sql-

injection.html
[6] Massachusetts Institute of Technology. Web Application S ecurity MIT Security Camp. RetrievedNovember1, 2007, from

http://web.mit.edu/netsecurity/Camp/2003/clambert-slides.pdf
[7] Massachusetts Institute of Technology. Web Application Security MIT Security Camp.

RetrievedNovember1,2007,fromhttp://groups.csmail.mit.edu/pag/readinggroup/wasserman07injection.pdf
[8] Gregory T. Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti. The Ohio State University Columbus, OH 43210 Using Parse Tree Validation to

Prevent SQL Injection Attacks. Retrieved January 2005, from http://portal.acm.org
[9] Zhendong Su, Gary Wassermann. University of California, Davis. The Essence of Command Injection Attacks inWeb Applications. Retrieved January

11, 2006, from http://portal.acm.org
[10] William G.J. Halfond, Alessandro Orso, and Panagiotis Manolios College of Computing – Georgia Institute of Technology. Using Positive Tainting

and Syntax-Aware Evaluation to Counter SQL Injection Attacks. Retrieved November 11, 2006, from http://portal.acm.org
[11] William G.J. Halfond and Alessandro Orso. College of Computing Georgia Institute of Technology. Preventing SQL Injection Attacks Using AMNESIA.

Retrieved May 28, 2007, from http://portal.acm.org
[12] José Fonseca, Marco Vieira, Henrique Madeira. CISUC, University of Coimbra Dep. of Informatics Engineering 3030 Coimbra – Portugal. Online

Detection of Malicious Data Access Using DBMS Auditing. Retrieved March 20, 2008, from http://portal.acm.org
[13] Frank S. Rietta 10630 Greenock Way Duluth, Georgia 30097. Application Layer Intrusion Detection for SQL Injection. Retrieved , Retrieved March

12, 2006, from http://portal.acm.org
[14] Martin Bravenboer, Eelco Dolstra, Eelco Visser, Delft University of Technology The Netherlands. Preventing Injection Attacks with Syntax Embeddings A

Host and Guest Language Independent Approach. Retrieved October 3, 2007, from http://portal.acm.org
[15] Yuji Kosuga, Kenji Kono, Miyuki Hanaoka Department of Information and Computer Science Keio University. Sania: Syntactic and Semantic

Analysis for Automated Testing against SQL Injection. Retrieved November 12, 2007, from IEEE Computer Society. http://ieeexplore.ieee.org
[16] Benjamin Livshits and U´ lfar Erlingsson. Microsoft Research. Using Web Application Construction Frameworks to Protect Against Code Injection

Attacks. Retrieved June 14, 2007, from http://ieeexplore.ieee.org
[17] José Fonseca CISUC - Polithecnic Institute of Guarda, Marco Vieira, Henrique Madeira DEI/CISUC - University of Coimbra. Testing and comparing web

vulnerability scanning tools for SQL injection and XSS attacks. Retrieved July 10, 2007, from http://ieeexplore.ieee.org
[18] Hal Berghel. Hijacking the Web Retrieved January 2, 2002, from http://portal.acm.org
[19] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic Technical University of Vienna. Noxes: A Client-Side Solution for Mitigating Cross-

Site Scripting Attacks. Retrieved June 5, 2006, from http://portal.acm.org
[20] http://www.owasp.org/index.php/Category:OWASP_SQLiX_Project
[21] http://www.owasp.org/index.php/Category:OWASP_SQLiX_Project
[22] http://search.cpan.org/~petdance/www-Mechanize- 1.34/lib/www/Mechanize.pm
[23] http://wapiti.sourceforge.net/
[24] http://sqlmap.sourceforge.net/
[25] http://www.acunetix.com/
[26] http://en.wikipedia.org/wiki/Cross-site_scripting
[27] http://en.wikipedia.org/wiki/SQL_injection
[28] http://www.unixwiz.net/techtips/sql-injection.html
[29] http://pixybox.seclab.tuwien.ac.at/pixy/index.php
[30] http://www.parosproxy.ort/index.shtml

