

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: VII Month of publication: July 2017

DOI:

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, July 2017- Available at www.ijraset.com

Wardowski Type Fixed Point Theorems in Complete Metric Spaces

Dr. C Vijender

Dept of Mathematics, Sreenidhi Institute of Science and Technology, Hyderabad.

Abstract: In this paper, we state and prove Wardowski type fixed point theorems in metric space by using a modified generalized F-contraction maps. These theorems extend other well-known fundamental metrical fixed point theorems in the literature (Dung and Hang in Vietnam J. Math. 43:743-753, 2015 and Piri and Kumam in Fixed Point Theory Appl. 2014:210, 2014, etc.).

Keywords: fixed point, metric space, F-contraction.

I. INTRODUCTION AND PRELIMINARIES

One of the most well-known results in generalizations of the Banach contraction principle is the Wardowski fixed point theorem [3]. Before providing the Wardowski fixed point theorem, we recall that a self-map T on a metric space (X,d) is said to be an F-contraction if there exist $F \in F$ and $\tau \in (0,\infty)$ such that

 $\forall x, y \in X, [d(Tx, Ty) > 0 \Rightarrow \tau + F(d(Tx, Ty)) \leq F(d(x, y))],$

where F is the family of all functions $F:(0,\infty)\to R$ such that

(F1) F is strictly increasing, i.e. for all x, $y \in R^+$ such that x < y, F(x) < F(y);

(F2) for each sequence $\left\{\chi_n\right\}_{n=1}^{\infty}$ of positive numbers, $\lim_{n\to\infty}\alpha_n=0$ if and only if $\lim_{n\to\infty}F(\alpha_n)=-\infty$;

(F3) there exists $k \in (0, 1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$.

Obviously every F-contraction is necessarily continuous. The Wardowski fixed point theorem is given by the following theorem.

A. Theorem 1.1[3]

Let (X, d) be a complete metric space and let $T: X \to X$ be an F-contraction. Then T has a unique fixed point $x^* \in X$ and for every $x \in X$ the sequence $\{T(x_n)\}_{n \in N}$ converges to x^* .

Later, *Wardowski* and Van Dung [4] have introduced the notion of an *F*-weak contraction and prove a fixed point theorem for *F*-weak contractions, which generalizes some results known from the literature. They introduced the concept of an *F*-weak contraction as follows.

B. Definition 1.2

Let ((X, d)) be a metric space. A mapping T:X \rightarrow X is said to be an *F*-weak contraction on (X, d) if there exist F \in F and τ >0 such that, for all $x,y\in X$,

 $d(Tx,\,Ty){>}0{\Rightarrow}\tau{+}F(d(Tx,\,Ty)){\leq}F(M(x,\,y)),$

where

1)
$$M(x, y)=\max\{d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2}\}.$$

By using the notion of *F*-weak contraction, Wardowski and Van Dung [4] have proved a fixed point theorem which generalizes the result of Wardowski as follows.

C. Theorem 1.3[4]

Let (X, d) be a complete metric space and let $T:X\to X$ be an F-weak contraction. If T or F is continuous, then T has a unique fixed point $x*\in X$ and for every $x\in X$ the sequence $\{T(x_n)\}_{n\in N}$ converges to x^* .

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

Volume 5 Issue VIII, July 2017- Available at www.ijraset.com

Recently, by adding values $d(T^2x, x)$, $d(T^2x, Tx)$, $d(T^2x, y)$, $d(T^2x, Ty)$ to (2), Dung and Hang [1] introduced the notion of a modified generalized F-contraction and proved a fixed point theorem for such maps. They generalized an F-weak contraction to a generalized F-contraction as follows.

D. Definition 1.4

Let (X, d) be a metric space. A mapping $T:X\to X$ is said to be a generalized F-contraction on (X, d) if there exist $F\in F$ and $\tau>0$ such

 $\forall x, y \in X, [d(Tx, Ty) > 0 \Rightarrow \tau + F(d(Tx, Ty)) \leq F(N(x, y))],$

Where

$$N(x,y) = \max \{d(x,y), \, d(x,Tx), \, d(y,Ty), \, \frac{d(x,Ty) + d(y,Tx)}{2} \, , \, \frac{d(T^2x,x) + d(T^2x,Ty)}{2} \, , \, d(T^2x,Tx), \, d(T^2x,y), \, d(T^2x,Ty) \}.$$

By using the notion of a generalized F-contraction, Dung and Hang have proved the following fixed point theorem, which generalizes the result of Wardowski and Van Dung [4].

E. Theorem 1.5[1]

Let (X, d) be a complete metric space and let $T:X \rightarrow X$ be a generalized F-contraction. If T or F is continuous, then T has a unique fixed point $x^* \in X$ and for every $x \in X$ the sequence $\left\{T(x_n)\right\}_{n \in N}$ converges to x^* .

Very recently, Piri and Kumam [2] described a large class of functions by replacing the condition (F₃) in the definition of Fcontraction introduced by Wardowski with the following one: (F_3') :

F is continuous on $(0, \infty)$.

They denote by F the family of all functions $F:R^+\to R$ which satisfy conditions (F_1) , (F_2) , and (F_3) . Under this new set-up, Piri and Kumam proved some Wardowski and Suzuki type fixed point results in metric spaces as follows.

F. Theorem 1.6[2]

Let T be a self-mapping of a complete metric space X into itself. Suppose there exist $F \in F$ and $\tau > 0$ such that $\forall x, y \in X, [d(Tx, Ty) > 0 \Rightarrow \tau + F(d(Tx, Ty)) \leq F(d(x, y))].$

Then T has a unique fixed point $x^* \in X$ and for every $x_0 \in X$ the sequence $\{T^n(x_0)\}$ converges to x^* .

G. Theorem 1.7[2]

Let T be a self-mapping of a complete metric space X into itself. Suppose there exist F∈F and τ>0 such that

$$\forall x, y \in X, \left[\frac{1}{2} d(x, Tx) < d(x, y) \Rightarrow \tau + F(d(Tx, Ty)) \le F(d(x, y))\right].$$

Then T has a unique fixed point $x^* \in X$ and for every $x_0 \in X$ the sequence $\{T^n x_0\}_{n=1}^{\infty}$ converges to x^* .

The aim of this paper is to introduce the modified generalized F-contractions, by combining the ideas of Dung and Hang [1], Piri and Kumam [2], Wardowski [3] and Wardowski and Van Dung [4] and give some fixed point result for these type mappings on complete metric space.

II. MAIN RESULTS

Let \pounds_G denote the family of all functions $F:R_+ \to R$ which satisfy conditions (F_1) and (F_3) and (F_3) and (F_3) are denote the family of all functions $F:R_+ \rightarrow R$ which satisfy conditions (F_1) and (F_3) .

A. Definition 2.1

Let (X, d) be a metric space and $T:X \to X$ be a mapping. T is said to be modified generalized F-contraction of type (A) if there exist \pounds_G and $\tau > 0$ such that

1) $\forall x, y \in X, [d(Tx, Ty) > 0 \Rightarrow \tau + F(d(Tx, Ty)) \leq F(M_T(x, y))],$ where

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, July 2017- Available at www.ijraset.com

 $M_{T}(x, y) = \max\{d(x, y), \frac{d(x, Ty) + d(y, Tx)}{2}, \frac{d(T^{2}x, x) + d(T^{2}x, Ty)}{2}, d(T^{2}x, Tx), d(T^{2}x, y), d(T^{2}x, Ty) + d(x, Tx), d(Tx, y) + d(y, Ty)\}.$

B. Remark 2.2

Note that \mathfrak{L}_{w} . Since, for $\beta \in (0, \infty)$, the function $F(\alpha) = \frac{-1}{\alpha + \beta}$ satisfies the conditions (F_1) and (F_3') but it does not satisfy (F_2) , we have \mathfrak{L}_{w} .

C. Definition 2.3

Let (X, d) be a metric space and $T:X \to X$ be a mapping. T is said to be modified generalized F-contraction of type (B) if there exist \pounds_G and $\tau > 0$ such that

 $\forall x, y \in X, [d(Tx, Ty) > 0 \Rightarrow \tau + F(d(Tx, Ty)) \leq F(M_T(x, y))].$

D. Remark 2.4

Note that \pounds_w . Since, for $\beta \in (0, \infty)$, the function $F(\alpha) = \ln(\alpha + \beta)$ satisfies the conditions (F_1) and (F_3) but it does not satisfy (F_2) , we have $\pounds \subset \pounds_w$.

E. Remark 2.5

- 1) Every F-contraction is a modified generalized F-contraction.
- 2) Let *T* be a modified generalized *F*-contraction. From (3) for all $x, y \in X$ with $Tx \neq Ty$, we have $F(d(Tx, Ty)) < \tau + F(d(Tx, Ty))$

$$\leq F(\max\{d(x, y), \frac{d(x, Ty) + d(y, Tx)}{2}, \frac{d(T^2x, x) + d(T^2x, Ty)}{2}, d(T^2x, Tx), d(T^2x, y), d(T^2x, Ty) + d(x, Tx), d(Tx, y) + d(y, Ty)\}).$$

Then, by (F_1) , we get

$$d(Tx,\ Ty) < \max\{d(x,\ y),\ \frac{d(x,Ty) + d(y,Tx)}{2}, \frac{d(T^2x,x) + d(T^2x,Ty)}{2},\ d(T^2x,\ Tx),\ d(T^2x,\ y),\ d(T^2x,\ y),\ d(T^2x,\ Ty) + d(x,\ Tx),\ d(Tx,\ y) + d(y,\ Ty)\}, \ for\ all\ x,\ y \in X,\ Tx \neq Ty.$$

F. Theorem 2.6

Let (X, d) be a complete metric space and $T:X\to X$ be a modified generalized F-contraction of type (A). Then T has a unique fixed point $x^*\in X$ and for every $x_0\in X$ the sequence $\{T^n(x_0)\}_{n=1}^\infty$ converges to x^* .

G. Proof

Let $x_0 \in X$. Put $x_{n+1} = T^n x_0$ for all $n \in \mathbb{N}$. If, there exists $n \in \mathbb{N}$ such that $x_{n+1} = x_n$, then $Tx_n = x_n$. That is, x_n is a fixed point of T. Now, we suppose that $x_{n+1} \neq x_n$ for all $n \in \mathbb{N}$. Then $d(x_{n+1}, x_n) > 0$ for all $n \in \mathbb{N}$. It follows from (3) that, for all $n \in \mathbb{N}$,

1)
$$\tau + F(d(Tx_{n-1}, Tx_n))$$

$$\leq \!\! F(max\{d(x_{n-l},\,x_n),\,\frac{d(x_{n-l},Tx_n)+d(x_n,Tx_{n-l})}{2}\,,\,\frac{d(T^2x_{n-l},x_{n-l})+d(T^2x_{n-l},Tx_n)}{2}\,,\,d(T^2x_{n-l},\,Tx_{n-l}),\,d(T^2x_{n-l},\,x_n),\,d($$

$$Tx_n)\!\!+\!\!d(x_{n-1},\,Tx_{n-1}),\,d(Tx_{n-1},\,x_n)\!\!+\!\!d(x_n,\,Tx_n)\})$$

$$= F(\max\{d(x_{n-1}, x_n), \ \frac{d(x_{n-1}, x_{n+1}) + d(x_n, x_n)}{2}, \ \frac{d(x_{n+1}, x_{n-1}) + d(x_{n+1}, x_{n+1})}{2}, \ d(x_{n+1}, x_{n+1}), \ d(x_{n+1}, x_n), \ d(x_{n+1}, x_n), \ d(x_{n+1}, x_{n+1}) + d(x_{n-1}, x_n), \ d(x_{n+1}, x_n), \$$

$$d(x_n, x_n)+d(x_n, x_{n+1})$$

=
$$F(\max\{d(x_{n-1}, x_n), d(x_n, x_{n+1})\}).$$

If there exists $n \in \mathbb{N}$ such that $\max\{d(x_{n-1}, x_n), d(x_n, x_{n+1})\} = d(x_n, x_{n+1})$ then (4) becomes

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VIII, July 2017- Available at www.ijraset.com

 $\tau + F(d(x_n, x_{n+1})) \le F(d(x_n, x_{n+1})).$

Since $\tau > 0$, we get a contradiction. Therefore

 $\max\{d(x_{n-1}, x_n), d(x_n, x_{n+1})\}=d(x_{n-1}, x_n), \forall n \in \mathbb{N}.$

Thus, from (4), we have

2) $F(d(x_n, x_{n+1})) \le F(d(Tx_{n-1}, Tx_n)) \le F(d(x_{n-1}, x_n)) - \tau F(d(x_{n-1}, x_n))$.

It follows from (5) and (F_1) that

 $d(x_n, x_{n+1}) < d(x_{n-1}, x_n), \forall n \in \mathbb{N}.$

Therefore $\{d(x_{n+1}, x_n)\}_{n \in \mathbb{N}}$ is a nonnegative decreasing sequence of real numbers, and hence

 $\lim_{n\to\infty} d(x_{n+1}, x_n) = \gamma \ge 0.$

Now, we claim that $\gamma=0$. Arguing by contradiction, we assume that $\gamma>0$. Since $\{d(x_{n+1}, x_n)\}_{n\in\mathbb{N}}$ is a nonnegative decreasing sequence, for every $n\in\mathbb{N}$, we have

3) $d(x_{n+1}, x_n) \ge \gamma$.

From (6) and (F_1) , we get

4) $F(\gamma) \le F(d(x_{n+1}, x_n)) \le F(d(x_{n-1}, x_n)) - \tau$ $\le F(d(x_{n-2}, x_{n-1})) - 2\tau$

 $F(d(x_0, x_1))-n\tau$,

for all $n \in \mathbb{N}$. Since $F(\gamma) \in \mathbb{R}$ and $\lim_{n \to \infty} [F(d(x_0, x_1)) - n\tau] = -\infty$, there exists $n_1 \in \mathbb{N}$ such that

5) $F(d(x_0, x_1))=n\tau < F(\gamma), \forall n > n_1.$

It follows from (7) and (8) that

 $F(\gamma) \le F(d(x_0, x_1)) - n\tau \le F(\gamma), \forall n > n_1.$

It is a contradiction. Therefore, we have

 $\textit{6)} \quad lim_{n\to\infty}d(x_n,\,Tx_n) = lim_{n\to\infty}d(x_n,\,x_{n+1}) = 0.$

As in the proof of Theorem 2.8 in [2], we can prove that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence. So by completeness of (X, X_n)

d), $\{x_n\}_{n=1}^{\infty}$ converges to some point x* in X. Therefore,

7) $\lim_{n\to\infty} d(x_n,x^*)=0$.

Finally, we will show that $x^*=Tx^*$. We only have the following two cases:

a)
$$\forall n \in \mathbb{N}, \exists i_n \in \mathbb{N}, i_n > i_{n-1}, i_0 = 1 \text{ and } x_{i-1} = Tx^*,$$

 $\exists n_3 \in \mathbb{N}, \forall n \geq n_3, d(Tx_n, Tx*) > 0.$

In the first case, we have

$$x^*=\lim_{n\to\infty} x_{i_{n+1}}=\lim_{n\to\infty} Tx^*=Tx^*.$$

In the second case from the assumption of Theorem 2.8, for all $n \ge n_3$, we have

8) $\tau + F(d(x_{n+1}, Tx^*)) = \tau + F(d(Tx_n, Tx^*))$

$$\leq F(\max\{d(x_n,\ x^*),\ \frac{d(x_n,Tx^*)+d(x^*,Tx_n)}{2}\ ,\ \frac{d(T^2x_n,x_n)+d(T^2x_n,Tx^*)}{2}\ ,\ d(T^2x_n,\ Tx_n),\ d(T^2x_n,\ x^*),\ d(T^2x_n,\ Tx^*)+d(x_n,\ Tx^*)+d(x_n,\ Tx^*)$$

 Tx_n), $d(Tx_n, x^*)+d(x^*, Tx^*)$).

From (F_3') , (10), and taking the limit as $n \rightarrow \infty$ in (11), we obtain

 $\tau + F(d(x^*, Tx^*)) \le F(d(x^*, Tx^*)).$

This is a contradiction. Hence, $x^*=Tx^*$. Now, let us to show that T has at most one fixed point. Indeed, if $x^*,y^*\in X$ are two distinct fixed points of T, that is, $Tx^*=x^*\neq y^*=Ty^*$, then

 $d(Tx^*, Ty^*)=d(x^*, y^*)>0.$

It follows from (3) that

 $F(d(x^*, y^*)) < \tau + F(d(x^*, y^*))$

$$=\tau+F(d(Tx^*, Tv^*))$$

$$\leq \!\! F(\max\{d(x^*,\ y^*),\ \frac{d(x^*,Ty^*) + d(y^*,Tx^*)}{2}\,,\ \frac{d(T^2x^*,x^*) + d(T^2x^*,Ty^*)}{2}\,,\ d(T^2x^*,\ Tx^*),\ d(T^2x^*,\ y^*),\ d(T^2x^*,\ y^*),$$

 Ty^*)+ $d(x^*, Tx^*), d(Tx^*, y^*)+d(y^*, Ty^*)$ }

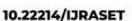
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 5 Issue VIII, July 2017- Available at www.ijraset.com

$$= F(\max\{d(x^*,y^*), \ \frac{d(x^*,y^*) + d(y^*,x^*)}{2} \ , \ \frac{d(x^*,x^*) + d(x^*,y^*)}{2} \ , \ d(x^*,x^*), \ d(x^*,x^*), \ d(x^*,y^*), \ d(x^*,y^*) + d(x^*,x^*), \ d(x^*,y^*) + d(x^*,y^*) + d(x^*,x^*), \ d(x^*,x^*) + d(x^*,x^*) + d(x^*,x^*), \ d(x^*,x^*) + d(x^*,x^*)$$

which is a contradiction. Therefore, the fixed point is unique.

REFERENCES

- [1] Dung, NV, Hang, VL: A fixed point theorem for generalized F-contractions on complete metric spaces. Vietnam J. Math. 43, 743-753 (2015)
- [2] Piri, H, Kumam, P: Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 210 (2014). Doi
- [3] Wardowski, D: Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)
- [4] Wardowski, D, Van Dung, N: Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math. 1, 146-155 (2014).



45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)