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Abstract: In this paper, we state and prove Wardowski type fixed point theorems in metric space by using a modified
generalized F-contraction maps. These theorems extend other well-known fundamental metrical fixed point theorems in the
literature (Dung and Hang in Vietham J. Math. 43:743-753, 2015 and Piri and Kumam in Fixed Point Theory Appl.
2014:210, 2014, etc.).
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L. INTRODUCTION AND PRELIMINARIES
One of the most well-known results in generalizations of the Banach contraction principle is the Wardowski fixed point theorem [3].
Before providing the Wardowski fixed point theorem, we recall that a self-map T on a metric space (X,d) is said to be an F-
contraction if there exist FEF and t€(0,00) such that
VX, YEX, [d(TX, Ty)>0=>t+F(d(Tx, Ty)) < F(d(x, y))].
where F is the family of all functions F:(0,00)—R such that
(F1)F is strictly increasing, i.e. for all x, yeR" such that x<y, F(X)<F(y);

(F2)for each sequence {Xn}?=1 of positive numbers, lim__«, =0 ifandonlyif lim___ F(e,)=-o ;

(F3)there exists ke(0, 1) such that lim __ . a"*F(a)=0.

Obviously every F-contraction is necessarily continuous. The Wardowski fixed point theorem is given by the following theorem.

A. Theorem 1.1[3]
Let (X, d)be a complete metric space and let T:X—X be an F-contraction. Then T has a unique fixed pointx*€X and for

every xeX the sequence {T (X, )} converges to X .

neN
Later, Wardowski and VVan Dung [4] have introduced the notion of an F-weak contraction and prove a fixed point theorem for F-
weak contractions, which generalizes some results known from the literature. They introduced the concept of an F-weak contraction
as follows.

B. Definition 1.2
Let ((X, d) be a metric space. A mapping T:X—X is said to be an F-weak contraction on (X, d) if there exist FEF and =0 such that,
for all x,yeX,
d(Tx, Ty)>0=>t+F(d(Tx, Ty))<F(M(x, Y)),
where
d(x, Ty) +d(y,Tx)
2 >

By using the notion of F-weak contraction, Wardowski and Van Dung [4] have proved a fixed point theorem which generalizes the
result of Wardowski as follows.

1) M(x, y)=max{d(x, y),d(x, Tx),d(y, Ty),

C. Theorem 1.3[4]
Let (X, d) be a complete metric space and let T:X—X be an F-weak contraction. If T or F is continuous, then T has a unique fixed

point x*€X and for every xeX the sequence {T (Xn )} converges to x*.

neN

©IJRASET (UGC Approved Journal): All Rights are Reserved

588



International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887
Volume 5 Issue VIII, July 2017- Available at www.ijraset.com
Recently, by adding values d(T?x, x), d(T?x, Tx), d(T%x, y), d(T?x, Ty) to (2), Dung and Hang [1] introduced the notion of a
modified generalized F-contraction and proved a fixed point theorem for such maps. They generalized an F-weak contraction to a
generalized F-contraction as follows.

D. Definition 1.4
Let (X, d) be a metric space. A mapping T:X—Xis said to be a generalized F-contraction on (X, d) if there exist FEF and ©>0 such
that
VX, YEX, [d(TX, Ty)>0=>t+F(d(Tx, Ty))<F(N(x, ¥))],
Where

d(x, Ty)+d(y,TX) d(T?x, X)+d(T?x, T
N(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), (x.Ty) 5 (¥, Tx) , ( ) 5 ( ) ,d(T?, TX), d(T%, y), d(T?x, Ty)}.
By using the notion of a generalized F-contraction, Dung and Hang have proved the following fixed point theorem, which
generalizes the result of Wardowski and VVan Dung [4].

E. Theorem 1.5[1]
Let (X, d) be a complete metric space and let T:X—X be a generalized F-contraction. If T or F is continuous, then T has a unique

fixed point x*e€X and for every xeX the sequence {T (Xn )} converges to x*.

neN
Very recently, Piri and Kumam [2] described a large class of functions by replacing the condition (F3) in the definition of F-
contraction introduced by Wardowski with the following one:

(Fs):

F is continuous on (0, ).

They denote by F the family of all functions F:R*—R which satisfy conditions (F1), (F.), and (F3"). Under this new set-up, Piri and
Kumam proved some Wardowski and Suzuki type fixed point results in metric spaces as follows.

F. Theorem 1.6[2]
Let T be a self-mapping of a complete metric space X into itself. Suppose there exist FEF and t>0 such that
VX, yeX, [d(Tx, Ty)>0=>t+F(d(Tx, Ty))<F(d(X, ¥))].

Then T has a unique fixed point x*€X and for every x,€X the sequence {T n (XO )} converges to x.
n=1

G. Theorem 1.7[2]
Let T be a self-mapping of a complete metric space X into itself. Suppose there exist FEF and >0 such that

VX, YEX, [% d(x, TX)<d(X, y)=>t+F(d(Tx, Ty))<F(d(x, y))].

Then T has a unique fixed point x*€X and for every x,eX the sequence {T n XO} converges to x*.
n=1

The aim of this paper is to introduce the modified generalized F-contractions, by combining the ideas of Dung and Hang [1], Piri
and Kumam [2], Wardowski [3] and Wardowski and VVan Dung [4] and give some fixed point result for these type mappings on
complete metric space.

1. MAIN RESULTS
Let £ denote the family of all functions F:R,—R which satisfy conditions (F,) and (Fs) and £ denote the family of all functions
F:R.—R which satisfy conditions (F;) and (Fs).

A. Definition 2.1

Let (X, d) be a metric space and T:X—X be a mapping. T is said to be modified generalized F-contraction of type (A) if there
exist £5 and ©>0 such that

1) vx, yeX, [d(Tx, Ty)>0=>t+F(d(Tx, Ty))<F(M+(X, ¥))],

where
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2 2
M+(x, y)=max{d(x, y), dx, Ty) +d(y. TX) : AT, %) +d(T% Ty), d(T?, TX), d(T?, y), d(T, Ty)+d(x, Tx), d(Tx,

2 2
y)+d(y, Ty)}.

B. Remark 2.2

Note that £,,. Since, for B€(0, «), the function F(a)= satisfies the conditions (F;) and (Fs') but it does not satisfy (F,), we

a+p
have £,,.

C. Definition 2.3

Let (X, d) be a metric space and T:X—X be a mapping. T is said to be modified generalized F-contraction of type (B) if there
exist £gcand 0 such that

VX, YEX, [d(TX, Ty)>0=>t+F(d(Tx, Ty))<F(M+(X, ¥))].

D. Remark 2.4
Note that £,,. Since, for B€(0, «), the function F(a)=In(o+p) satisfies the conditions (F,) and (F3) but it does not satisfy (F,), we
havef c £,.

E. Remark 2.5
1) Every F-contraction is a modified generalized F-contraction.
2) Let T be a modified generalized F-contraction. From (3) for all x, yeX with Tx#Ty, we have
F(d(Tx, Ty))<t+F(d(Tx, Ty))
d(x, Ty) +d(y, TX) d(T?x, X) +d(T?x, Ty)
2 ’ 2

< F(max{d(x, y), , d(T%, Tx), d(T%, y), d(T?, Ty)+d(x, Tx), d(Tx, y)+d(y,

YD
Then, by (F;), we get

2 2
d(Tx, Ty)<max{d(x, y), dex Ty)42rd(y, ) ,d(T X, X) +2d(T % Ty), d(T?, Tx), d(T?, y), d(T%, Ty)+d(x, Tx), d(Tx,

y)+d(y, Ty)}, for all x, yeX, Tx#£Ty.

F. Theorem 2.6
Let (X, d) be a complete metric space and T:X—X be a modified generalized F-contraction of type (A). ThenT has a unique fixed

point x-€X and for every x,€X the sequence {T n (XO)} converges to x.
n=1

G. Proof
Let x€X. Put X, =T "X, for all nEN. If, there exists n€N such that x,+1=x,, then TX, = X,. That is, x, is a fixed point of T.
Now, we suppose that X,.17x, for all nEN. Then d(Xy+1, X,)>0 for all neN. It follows from (3) that, for all neN,
1) t+F(d(Txp-1, TXp))
2 2
d(Xn—IVTXn ) + d(Xn VTXn—l) d(T Xn—l’ Xn—l) + d(T Xn—l’TXn)
2 ’ 2

Txp)+d(Xn-1, TXn-1), A(TXn-1, Xp)+d(Xn, TXn)})

d(x, ., X)) +d(X ,x d(X .., X, ) Fd(X ., X .
=F(max{d(xn_1, Xn), ( n-1 n 1) ( n n) ’ ( n+l n—l) ( n+l n 1) ’ d(Xn+1, Xn+1), d(Xn+1, Xn), d(Xn+1, Xn+1)+d(Xn_1, Xn),

2 2

<F(max {d(Xq 1, Xu), AT 1, Txe 1), A(T0-1, Xn), AT 1,

d(Xn, Xn)Fd(Xn, Xn+1)})
=F(max{d(Xn-1, Xn), d(Xn, Xn+1)})-
If there exists neN such that max{d(Xn-1, Xn), d(Xn, Xn+1)}=d(Xn, Xn:+1) then (4) becomes
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T+HF(d(Xn, Xn+1))<F(d(Xn, Xn+1))-
Since ©0, we get a contradiction. Therefore
max{d(Xn-1, Xn), d(Xn, Xn+1) }=d(Xn-1, Xs), YNEN.
Thus, from (4), we have
2)  F(d(Xn, Xn+1)) < FA(TXq-1, TXn))<F(d(Xn-1, Xn))—tF(d(Xn-1, Xn))-
It follows from (5) and (F,) that
d(Xn, Xn+1)<d(Xn-1, Xn),YNEN.
Therefore {d(Xn+1, Xn) }nen IS @ NONNegative decreasing sequence of real numbers, and hence
limp_ . d(Xn+1, Xn)=y=>0.
Now, we claim that y=0. Arguing by contradiction, we assume that y>0. Since {d(Xn+1, Xn)}nen iS @ NONNegative decreasing sequence,
for every neN, we have
3)  d(Xn+1, Xn)>Y-
From (6) and (F;), we get
4)  F(y)<F(d(Xn+1, Xn))<F(d(Xn-1, Xn))—T
< F(d(Xp-2y Xn-1))21
F(d(Xo, X1))nr,
for all neN. Since F(y)€R and lim,_.[F(d(Xo, X1))—nt]=—00, there exists n;€N such that
5) F(d(Xo, X1))—nt<F(y), Yn>n,.
It follows from (7) and (8) that
F(y)<F(d(xo, X1))—nt<F(y), ¥n>n,.
It is a contradiction. Therefore, we have
6) limp_d(Xn, TXn)=limp_d(Xn, Xn+1)=0.

As in the proof of Theorem 2.8 in [2], we can prove that {Xn}‘f=1 is a Cauchy sequence. So by completeness of (X,

d), {X,}._, converges to some point x* in X. Therefore,

7)) limp_.d(Xn,x*)=0.

Finally, we will show that x*=Tx*. We only have the following two cases:
a) VneN, JieN, in>ip-, i;=1and X; ,=Tx*,

3 n3eN, Vn>ns, d(TXn, TX*)>O.

In the first case, we have

X =My Xi . =My TX=TX™

i+l
In the second case from the assumption of Theorem 2.8, for all n>n;, we have
8) 1+F(d(Xps1, TX*))=t+F(d(Txy,, TX*))

d(x,, TX*)+d(x*, Tx,) d(T?x,,x,)+d(T>x,,Tx*)
2 ’ 2

<F(max {d(x,, X%), » (T, TX), d(T?Xn, X*), d(T?%,, Tx*)+d (X,

TXn), d(TXn, X*)+d(x*, TX)}).

From (F3"), (10), and taking the limit as n—co in (11), we obtain

t+F(d(x*, Tx*))<F(d(x*, Tx*)).

This is a contradiction. Hence, x*=Tx*. Now, let us to show that T has at most one fixed point. Indeed, if x*,y*€Xare two distinct

fixed points of T, that is, Tx*=x*£y*=Ty*, then

d(Tx*, Ty*)=d(x*, y*)>0.

It follows from (3) that

F(d(x", y))<t+F(d(x*, y*))
=t+F(d(Tx*, Ty*))

docs, Ty*) +d(y*, Tx*)  d(T?x*,x*) +d(T°x*, Ty*)
2 ’ 2

Ty?)+d(x+, Tx?), d(Txs, y)+d(y, Ty?)})

<F(max{d(x*, y*), AT, Txe), d(T2, ), d(T2x,
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d(x*, y*) +d(y*,x*)  d(x*,x*) +d(x*,y*)
2 ’ 2

=F(max{d(x", y°), » d(xr, x7), d(xs, y7), dxe, y)+d(xs, x7), d(x-, y-)+d(y,
y)})
=F(d(x", y))

which is a contradiction. Therefore, the fixed point is unique.
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