

2 IX September 2014

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 156

Path Based Test Suite Augmentation using
Artificial Bee Colony Algorithm

Dr.Bharti Suri, Prabhneet Kaur

Associate Professor,USIT

Guru Gobind Singh Indraprasatha University,Delhi

Assistant Professor,GTBIT

Guru Gobind singh Indraprastha University,Delhi

Abstract- Regression testing is the activity of retesting a program that ensures that no new bugs are generated into the previously
tested code. This activity involves selecting a few test cases from the test suite that exercise these changes. Suppose there is a
program P and P’ is it’s modified version. The regression test suite so selected should be capable enough to bring out the
differences between the original program (P) and the modified program (P’) that would help the developer discover errors
caused by changes. Prime importance has been laid in identifying the regression test suites and ordering them. However less
focus is given to the effectiveness of regression test suite in response to changes. Moreover whether the existing test suite is
sufficient for handling the changes also need to be checked. If they are not adequate then providing guidance for creating the
new test cases that would be targeting the changed behaviour of the program. This problem is called as test suite augmentation. .
The main aim of this paper is to explain the concept of test suite augmentation problem and applying artificial bee colony
algorithm to find the affected portions in a program and checking adequacy of the existing test suite to handle those affected
portions. If the existing test suite is inefficient to handle changes then manually generating the test cases to cover those
requirements. The main focus of the technique is to achieve maximum path coverage.

Keywords: Bee Colony Algorithm Test suite Augmentation

I. INTRODUCTION

Regression testing [1][2]is a type of software testing that seeks
to uncover new errors, or regressions, in existing functionality
after changes have been made to the software, such as functional
enhancements, patches or configuration changes. Common
methods of regression testing include rerunning previously run
tests and checking whether program behaviour has changed and
whether previously fixed faults have re-emerged. Regression
testing can be used to test a system efficiently by systematically
selecting the appropriate minimum set of tests needed to

adequately cover a particular change. The changes that can be
introduced in a program can be addition of any new statements,
deletion of statements or modification of statements. These
changes often affect other parts of the program. A program may
take new paths when modifications are made. The regression
test activities include regression test selection[3], regression test
reduction[4], and regression test suite prioritization and test
suite augmentation. Test suite augmentation [5] is an activity of
regression testing[6] that is concerned with the tasks of
identifying the elements that are affected by changes and then

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 157

creating or guiding the creation of test cases that exercise those
elements .So Test Suite Augmentation[7] consists of two main
steps. First it identifies the affected code elements and then it
creates test cases that exercise those elements.

A new approach has been devised in this paper that identifies
all the affected paths in a program during the course of
modifications, additions, deletions and correspondingly
generates test cases if the original test suite is inefficient enough
to handle changes. Moreover the proposed technique also
reduces the size of the test suite in case deletion of statements or
conditions in a program as the test cases that exercise those
paths may become obsolete. We employ a bee colony algorithm
that is used to find all the affected portions in a program.

II. BACKGROUND AND RELATED WORK

2.1 Artificial Bee colony Algorithm: Swarm intelligence [8] has
become a research interest to many research scientists of related
fields in recent years. These systems are typically made up of a
population of self-organized individuals interacting locally with
one another and with their environment. Even though there is no
centralized component that controls the behaviour of
individuals, local interactions between all individuals often lead
to the emergence of global behaviour. These characteristics of
swarms inspired huge number of researchers to implement such
behaviour in computer software for optimization problems.
Some of the swarm based meta-heuristics algorithms are Particle
Swarm Optimization, Ant Colony Optimization, and Artificial
Bee Colony Optimization. Dervis Karaboga [10] in 2005
defined the artificial bee colony algorithm, which is the most
recently introduced swarm based meta-heuristics algorithm.
Since its inception, artificial bee colony algorithm has been
applied in various fields. It also finds application in the field of
software testing, which is one of the most important phases of
the software development lifecycle. The minimal model of
forage selection that leads to the emergence of collective
intelligence of honey bee swarms [11] consists of three essential
components: food sources, employed foragers and unemployed
foragers and the model defines two leading modes of the

behavior: the recruitment to a nectar source and the
abandonment of a source. In the ABC algorithm [12][13], the
colony of artificial bees contains three groups of bees: employed
bees, onlookers and scouts. A bee waiting on the dance area for
making decision to choose a food source is called an onlooker
and a bee going to the food source visited by it previously is
named an employed bee. A bee carrying out random search is
called a scout. In the ABC algorithm, first half of the colony
consists of employed artificial bees and the second half
constitutes the onlookers. For every food source, there is only
one employed bee. In other words, the number of employed bees
is equal to the number of food sources around the hive. The
employed bee whose food source is exhausted by the employed
and onlooker bees becomes a scout. In the ABC algorithm, each
cycle of the search consists of three steps: sending the employed
bees onto the food sources and then measuring their nectar
amounts; selecting of the food sources by the onlookers after
sharing the information of employed bees and determining the
nectar amount of the foods; determining the scout bees and then
sending them onto possible food sources. At the initialization
stage, a set of food source positions are randomly selected by
the bees and their nectar amounts are determined. Then, these
bees come into the hive and share the nectar information of the
sources with the bees waiting on the dance area within the hive.
At the second stage, after sharing the information, every
employed bee goes to the food source area visited by her at the
previous cycle since that food source exists in her memory, and
then chooses a new food source by means of visual information
in the neighborhood of the present one. At the third stage, an
onlooker prefers a food source area depending on the nectar
information distributed by the employed bees on the dance area.
As the nectar amount of a food source increases, the probability
with which that food source is chosen by an onlooker increases
too. Hence, the dance of employed bees carrying higher nectar
recruits the onlookers for the food source areas with higher
nectar amount. After arriving at the selected area, she chooses a
new food source in the neighborhood of the one in the memory
depending on visual information. Visual information is based on
the comparison of food source positions. When the nectar of a
food source is abandoned by the bees, a new food source is

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 158

randomly determined by a scout bee and replaced with the
abandoned one.

2.2 Test suite Augmentation[9]: Consider a program P and let P’
be its modified version. Let T be a test suite for P. Regression
testing is concerned with validating P’ and to facilitate this
engineers often begin by reusing T. On the other hand test suite
augmentation is not concerned with reusing the test suite rather
concerned with two basic tasks. Firstly it is used to identify all
the affected elements that are those portions of P’ for which new
test cases may be required. Secondly it is also concerned with
creating or providing a suitable guidance or creating test cases
that exercise these affected elements. Test suite augmentation
[8] mainly consists of two main activities. The first activity is
concerned with identifying all the affected portions .Second
activity is concerned with creation of test cases for the affected
elements. Following three factors are mainly considered while
performing augmentation.

2.2.1 Coverage Criterion

Most augmentation techniques [14]operate on specific code
coverage criteria. The focus has been on branch coverage and it
is more likely to scale to larger systems.

2.2.2 Identifying Affected Elements

Test suite augmentation [15]techniques involve identifying the
affected elements .So this factor affects the augmentation
process.
2.2.3 Ordering Affected Elements

This factor also affects the augmentation[16] process that is the
order in which the affected elements are considered.There are
many techniques that are related to test suite augmentation
approach. These techniques are broadly divided into four
categories. The first category takes into account the coverage of
program entities namely statement, branches and definition use
pairs [18] [19] [20] and defines testing criteria for the software.
Techniques that fall into the second category generate testing
requirements based on program modifications [21]. Binkley [22]

and Rothermel and Harrold uses System Dependence Graph
[23] based slicing to generate testing requirements on the basis
of data and control flow relations involving a change. Another
technique based on slicing[20] proposed by Gupta and
colleagues [24] overcame the costs associated with building
system dependence graphs .The technique computes chains of
data and control dependences from the change to the output
statements. The third category of techniques produce
requirements for fault based testing that also incorporates
propagation conditions. RELAY framework given by
Richardson and Thompson [25] computes a set of conditions to
propagate the effects of faults to the output. A fault based testing
given by Morell [26] uses symbolic evaluation to find out fault
propagation equations. A fourth class of techniques usually adds
existing test suites to improve their fault revealing capability
[27].Bharti Suri and Prabhneet Nayyar[28] presented a survey
on various augmentation techniques.A Continuous Test suite
augmentation approach CONTESA for generating test cases
independently was presented by Zhihong[29] in 2013.

This paper describes an algorithm that would be useful for
finding all the affected portions[17] in a program .The affected
portions identified are paths, branches or blocks that are affected
by addition, deletion or modification of nodes. It utilizes ABC
algorithm to find all the affected portions in the program It
utilizes artificial bee colony algorithm to find out all the affected
portions in a program.

III. PROPOSED ALGORITHM

This section describes the proposed algorithm that would be
useful for finding all the affected portions in a program. The
affected portions identified are paths, branches or blocks that are
affected by addition, deletion or modification of nodes.
Moreover the algorithm utilizes the concept of artificial bee
colony algorithm that provides a search mechanism for finding
the food with maximum nectar quantity around the hive. Waggle
dance is a powerful mechanism that helps in communication
among various bees .The food sources are represented by nodes
.The scout bee is responsible for random search and by means of

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 159

waggle dance notifies employed bees about the presence of food
sources and the quality of the food. Bees exhibit the behavior of
path construction from hive till the best food source position
(end node). We use this concept of path construction so as to
find the total number of independent paths in the modified
program. These paths are then compared with the paths of
original program and the bee has the responsibility of selecting
those paths that are new and not present in the old path list.

3.1 Pseudo Code:

The Pseudo code for the proposed algorithm is as follows:

Paths_Construct

1. Start from the starting node
2. Move to the next sequential node.
3. If(next sequential node=Decision node)

{

A Move to the decision node

B Save path till the decision node

C Set decision node as the start node

D Set no. of bees= Outdegree of the decision
node

E Each bee takes mutually exclusive paths and
follows 3.

}

4. Else If(next sequential node=End node)

Move to the end node and save path and go
to step 7

5. Else IF (indegree [next sequential node]>1)

{

A Move to that node
B Save path and set that node as the Start

node
C Set no. of bees=1 and follow 2

}

6. Else follow 2
7. Exit

3.2 Explanation:

Before the algorithm is executed on modified program the basic
requirement is to construct its control flow graph (CFG).All the
nodes are numbered. The indegree and out degree of each node
is also calculated. The algorithm operates as:

The scout bee starts its search for the food sources(nodes) from
the hive (start node).It moves from one food source to other
food source (nodes) while keeping a track of all the food sources
that it encounters along its path. Whenever the scout bee
encounters multiple food sources along its path (predicate node)
it memorizes (saves path) its position and its distance from the
hive and goes back to the hive. It notifies employed bees by
means of waggle dance about presence of multiple food source
positions .The scout bee is responsible for recruitment of
employed bees depending upon the number of food sources
[Outdegree of the predicate node]. The employed bees recruited
along the multiple food sources traverse node by node while
checking for predicate nodes, end nodes and nodes having
indegree greater than one. These employed bees construct local
paths (partial solutions) and these paths would be utilized by the
scout bee to construct the entire path. If an employed bee
encounters a node having an indegree greater than one the bees
save their path and return back to the hive and inform the scout
to continue its search. If the employed bee while moving along
the local path encounters a predicate node it returns back to the
hive and recruits employed bees depending upon the outdegree
of that predicate node. This process of local path construction
continues until an end node is encountered. Each and every
employed bee is responsible for constructing its local path

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 160

(partial solutions) and these paths are saved and reported to the
scout bee.

3.3 Path Construction:

The scout bee is responsible for constructing the entire paths
(global solutions) based on the local paths. The local paths
generated by the employed bees are the partial solutions and
based on these local solutions scout bee constructs the path from
the bee hive to the end node. The scout bee memorizes all the
local paths and starts with the process of path construction. It
starts from the hive and continues until it does not encounter the
end node as it contains maximum amount of nectar.

3.4 Path Comparison

After the process of path construction the scout forms a path list
comprising of all the independent paths for the modified
program. This list is called as new path list. The path list for the
original program is denoted as old path list. It then compares the
old path list and the new path list. The paths that are present in
the old path list and the new path list are discarded from the new
path list. The paths obtained in the new path list that do not find
a match with the old path list are selected by the scout bee as
these are the affected portions. If a path is encountered that is
present in the old path list but does not find a match in the new
list then that path is not considered.

The test suite is run on the affected portions. If the original test
suite is able to cover the affected portions then the original test
suite is adequate enough to exercise the changed paths. If the
original test suite is not sufficient enough to exercise the
changes then new test cases are generated for those affected
paths and they are augmented with the original test suite. The
test cases covering the deleted paths i.e. paths present in the old
path list but not present in the new path list are examined. If
these test cases do not cover other paths then they are deleted
from the original test suite as they have become obsolete.

1V. EXPERIMENTATION AND ANALYSIS

Eight examples have been chosen and the above algorithm has
been executed on these examples. These examples are C++
programs. Based on the experimentation we get the following
results:

4.1 Comparison Of Total Number Of Independent Paths

Figure No.1: Paths in original vs Modified

The above plot shows the number of independent paths prior to
changes and after the changes has been made. These changes
can be additions, deletions and modifications within the
program. The number of independent paths in the program
increase or decrease depending upon the type of modification
made. If a predicate node is added the no. of paths through the
program tends to increase considerably. In the above analysis in
case first example the number of paths before changes were 4
and after an additional node (predicate node) is added to the
program the number of independent paths through the program
increases to 5. If a predicate node is deleted the number of paths
also tends to decrease. In case of salary example when a
decision node is deleted it also reduces the number of paths
from 3 to 2.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 161

4.2 No. Of Test Cases Added Deleted And Reused

Table 2:Table Showing Optimal Test suite

Figure No.2: Figure showing the optimal test suite

The above plot represents the number of test cases added or
deleted to form an optimal test suite. It also represents the
number of test cases that are reused in order to cover the
affected portions. Whenever an affected path is not covered by
the existing test suite a new test case is generated to cover that
path and this test case is augmented in the original test suite to
form a modified test suite. A test case is deleted from the test
suite if it does not cover any path in the modified version of the
program.

4.3 No. of Decision Nodes vs. No. of Bees

Figure No 3:No. of Bees vs Decision nodes

The above plot shows the number of bees required to generate
paths depending upon the number of decision nodes in the
program. It is observed that as the number decision nodes in a
program are increased more number of bees is required to form
local paths. The number of bees required to generate the local
paths depends upon the out degree of the decision node. It is
observed that for all predicate nodes having an out degree as
two the total number no. of bees required is calculated
as:((2*no. of decision nodes)+1)

4.4 Percentage Change in the Size of Test Suite

Figure No. 4:% Change in the size of Test suite

The above plot shows the shows the percentage in the size of
test suite after additions, deletions and modifications. It is
observed that in case of first program the size of the test suite is
increased as a new test case has been added. In case of third
program for salary the size of the test suite is decreased as a test
case has been deleted. There is no change in the size of the test
suite in case of modification as shown in program for area.

9.5 Affected Paths Vs Reuse Percentage

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 162

Figure no 5: Total reuse % of Original test suite

The above plot shows the number of test cases reused from the
original test suite so as to cover the affected paths in a program.
It is observed the changes that are made to the original program
are mostly covered by the original test suite. Therefore a good
percentage of reuse has been observed.

4.6 Path Coverage Achieved

Three cases are considered while evaluating path coverage
achieved by modified and original test suite. The following is
observed:

4.6.1 In Case Of Additions:

Whenever some nodes are added the following is observed:

Figure no. 6: No. of Affected paths

Figur
e No. 7: 100% Coverage Achieved

The first plot above shows the number of affected paths which
means the paths affected by changes.From the second plot we
observe that almost 50% coverage for affected portions is
achieved by running the existing test suite and the additional
coverage is achieved by the modified test suite.In these cases
test cases were generated for portions that were not covered to
achieve 100% path coverage..

V. CONCLUSION AND FUTURE SCOPE

As the software evolves regression testing is performed so as to
ensure that no new errors have been introduced into the
previously tested code. The main goal of regression testing is to
test those portions of the program that are affected by changes.
A program may observe many changes due to additions,
deletions or due to modifications of various program elements.
Due to such changes a program may take paths that may be
different from the ones observed in the original program. Test
suite augmentation is an important activity of regression testing
that is used to check whether the existing test suite is adequate
enough to exercise the change. If the existing test suite is not
adequate enough then it provides a guidance to generate test
cases. It not only provides guidance but also generates the test
cases for those changes and then augmenting the test cases in
the original test suite to form a modified test suite.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 163

Artificial Bee colony algorithm (ABC) [10] has found its usage
in various fields of software testing like Test suite Optimization,
Automated Generation of Pair wise Tests. This research utilizes
the behavior of bee in order to find all the independent paths in
the modified program. The proposed algorithm is used for
identifying the affected paths in a program. The bee also
performs a comparison between the path list of original and
modified programs and based on this comparison affected paths
are selected. The existing test suite is run on these affected paths
to check its adequacy. If the original test suite is not sufficient
enough to handle changes then new test cases are generated in
order to achieve 100% coverage. The algorithm has been
executed on 8 examples. It is able to detect the paths that have
been affected by changes. The results have shown 100% path
coverage and the generation of optimal test suite that can handle
changes effectively.

In future we intend ourselves to implement our technique and
develop a tool for the same. We also wish to automate the
process of generation of test cases and compare our technique
with other augmentation techniques.

REFERENCES

[1] Aditya P. Mathur “ Foundation of Software Testing”, First
Edition, Pearson Education, 2007.

[2] K K Aggarwal, Yogesh Singh “ Software Engineering”,
Revised Second Edition, New Age International Publisers, 2005

[3] Mary Jean Harrold, James A. Jones, Tongyu Li, and Donglin
Liang, “Regression Test Selection for Java Software”, Proc. of
the ACM Conf. on OO Programming, Systems, Languages, and
Applications (OOPSLA ’01), 2001, pp. 312 – 326.

[4] J.A.Jones andM. J.Harrold. Test suite reduction and
prioritization for modified condition/decision coverage. IEEE
Transactions on Software Engineering, 29(3), March 2003.

[5] T. Apiwattanapong , R. Santelices, P.K. Chittimalli, A. Orso,
and M. J. Harrold. Matrix: Maintenance-oriented testing

requirements identifier and examiner. In Test.: Acad. Ind Conf.
Pract. Res. Techn., pages 137–146, Aug. 2006.

[6] Roger S. Pressman, “Software Engineering: A practioners
Approach”, 4th Edition, 2007.

[7] S.Yoo and M. Harman. Test data augmentation: Generating
new test data from existing test data. Technical Report TR-08-
04, Dept. of Computer Science, King’s College London, July
2008

[8] D. Karaboga, “An Idea Based on Honey Bee Swarm for
Numerical Optimization,” Technical Report-TR06, Erciyes
University, Computer Engineering Department, Turkey, 2005

[9] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso,
and M. J.Harrold Test-suite augmentation for evolving software
In Auto. Softw.Eng, Sept. 2008.

[10] Dervis Karaboga · Bahriye Basturk; “A powerful and
efficient algorithm for numerical function optimization: artificial
bee colony (ABC) algorithm”; Springer Science+Business
Media B.V. 2007.

[11] Jeya Mala D., Kamalapriya M., Shobana R., Mohan V.: ‘A
non-pheromone based intelligent swarm optimization technique
in software test suite optimization’, IEEExplore – doi: 978-1-
4244-4711-4/09, #2009 IEEE, IAMA 2009

[12] Salim Bitam, Mohamed Batouche, El-ghazali Talbi; “ A
Survey on Bee Colony Algorithm”; IEEE International
Symposium on Parallel & Distributed Processing, Workshops
2010.

[13] Dahiya, S.S.; Chhabra, J.K.; Kumar, S.;
Application of Artificial Bee Colony Algorithm to Software
Testing, Software Engineering Conference (ASWEC), 2010, 21st

Australian IEEE Conferences

[14] L.Morell A Theory of Fault Based Testing, IEEE
Transactions on Software Engineering, 16(8):844-847, August
1990

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 164

[15] M.Harder, J Mallen and M.D Ernst.Improving test suites
via operational abstraction. In Proceedings of the 25th IEEE and
ACM SIGSOFT International Conference on Software
Engineering (ICSE 2003), pages 60-71, May 2003

[16] Z Xu and G.Rothermel. Directed test suite augmentation.
InAsia-Pac.Softw. Eng. Conf., Dec.2009.

[17] G.Rothermel andM.J Harrold. A safe, efficient regression
test selection technique. ACM Trans. Softw. Eng. Meth,
6(2):173–210, Apr. 1997.

[18] [15] D.Richardson and M.C Thompson The RELAY model
of error detection and its application. In Proc of Workshop on
Softw.Testing, Analysis and Verif. Pp223-230, July 1988

[19] L.Morell A Theory of Fault Based Testing, IEEE
Transactions on Software Engineering, 16(8):844-847, August
1990

[20] M.Harder, J Mallen and M.D Ernst.Improving test suites
via operational abstraction. In Proceedings of the 25th IEEE and
ACM SIGSOFT International Conference on Software
Engineering (ICSE 2003), pages 60-71, May 2003

[21] A Srivastava and J.Thiagarajan.Effectively prioritizing tests
in development environment. In Proc of Int’l Symp.on
Softw.Testing and Analysis, pp 97-106, July 2002

[22] G.Rothermel, R.Untch, C.Chu and M.Harrold .Test case
Prioritization .IEEE Trans on softw Eng., 27(10):929-948, Oct
.2001

[23]] S. Person, M. B. Dwyer, S. Elbaum, and C. S.
P˘as˘areanu. Differential symbolic execution. I Int’l. Symp.
Found. Softw. Eng., pages 226–237, Nov. 2008.

[24] R.Gupta, M.Harrold, and M.Soffa.Program slicing-based
regression testing techniques. J. Softw. Test., Verif. Rel.,
6(2):83–111, June 1996

[25] D.Richardson and M.C ThompsonThe RELAY model of
error detection and its application. In Proc of Workshop on
Softw.Testing, Analysis and Verif. Pp223-230, July 1988

[26] L.Morell A Theory of Fault Based Testing, IEEE
Transactions on Software Engineering, 16(8):844-847, August
1990

[27] G. Rothermel, M.J Harrold, J.Ostrin and C.Hong.An
empirical study of the effects of minimization on the fault
detection capabilities of test suites. In Proceedings of the
international Conference on Software Maintenance, pages 34-
43, November 1998

[28] Bharti Suri,Prabhneet Nayyar CoverageBased test suite
Augmentation techniques.In Proc of International Journal Of
Advances in Engineering and Technology, Vol. 1,Issue
2,pp.188-193,May 2011

[29] Zhihong Xu,Myra B.cohen,Wayne Morcyka,Gregg
Rothermel.Continious Test Suite Augmentation in Software
Product Lines ,In Proc Of ACM, SPLC August 26-30,2013

