

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: VII Month of publication: July 2017

DOI:

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VIII, July 2017- Available at www.ijraset.com

Fixed Point Theorem on Dislocated B-Metric Spaces

A.Thanga Pandi¹, J. Maria Joseph²

^{1,2}Department of Mathematics, St.Joseph's college, Tiruchirappalli, TamilNadu, India

Abstract: In this paper, we prove Fixed point theorem for cyclic contractions in dislocated b-metric spaces. This paper generalized many result in the current literature. Mathematics Subject Classification: 47H05; 47H10; 47J25 Keywords: Fixed point, Contraction mapping, Dislocated b-metric.

I. INTRODUCTION AND PRELIMINARIES

Fixed point theory plays one of the important roles in Mathematical Analysis. Many authors [1-6] presented fixed point theorem in different ways. In Banach contraction principle was introduced in 1922 by Banach [7] as follows:

Let (X, d) be a metric space and $T: X \to X$. Then T is called a banach contraction mapping if there exists $k \in [0, 1)$ such that $d(Tx, Ty) \le kd(x, y)$ for all $x, y \in X$.

The concept of kannan mapping was introduced in 1969 by kannan[8] as follows: (ii) T is called a kannan

mapping if there exists $r \in [0, 1)$ such that

 $d(Tx, Ty) \le rd(x, Tx) + rd(y, Ty)$ for all $x, y \in X$

Now,we recall the definition of cyclic map.Let A and B be non-empty subsets of a metric space (X, d) and $T : A \cup B \to A \cup B$. T is called a cyclic map iff $T(A) \subseteq B$ and $T(B) \subseteq A$.

In 2003, kirk etal.[9] introduced cyclic contraction as follows:

(iii) A cyclic map $T: A \cup B \rightarrow A \cup B$ is said to be cyclic contraction if there exists

 $\alpha \in [0,1)$ such that

 $d(T x, T y) \le \alpha d(x, y)$ for all $x \in A$ and $y \in B$.

In 2010, Karapinar and Erhan[10] introduced kannan type cyclic contraction as follows:

(iv) A cyclic map $T : A \cup B \to A \cup B$ is called a kannan type cyclic contraction if there exists $b \in [0, 1]$ such that

 $d(Tx, Ty) \le bd(x, Tx) + bd(y, Ty)$ for all $x \in A$ and $y \in B$.

If (X, d) is a complete metric space, at least one of (i),(ii),(iii) and (iv) holds, then it has a unique fixed point[7-

10]. Next, we discuss the development of space.

Definition 1.1. [7] Let X be a nonempty set. Suppose that the mapping

 $d: X \times X \rightarrow [0, \infty)$ satisfies the following conditions:

(d1) d(x, x) = 0 for all $x \in X$

 (d_2) d(x, y) = d(y, x) = 0 implies x = y for all $x, y \in X$

(d3) d(x, y) = d(y, x)implies for all $x, y \in X$

 $(d4) d(x, y) \le [d(x, z) + d(z, y)] \text{ for all } x, y, z \in X$

If d satisfies conditions (d1),(d2) and (d4),then d is a called quasi-metric on X. If

d satisfies conditions (d2),(d3) and (d4),then d is a called dislocated metric on X.If

d satisfies conditions (d₁),(d₃) and (d₄),then d is a called a metric on X.

In 2005 the concept of dislocated quasi-metric, which is a new generalization of quasi-b-metric spaces and dislocated b-metric space, was introduced. By Definition

1.1, if setting conditions (d2), and (d4) holds true, then d is called a dislocated quasi-metric on X.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 5 Issue VIII, July 2017- Available at www.ijraset.com

A. Remark

It is obvious that metric spaces are quasi-metric spaces and dislocated metric spaces, but the converse is not true. Definition 1.2. [11] Let X be a non-empty set. Suppose that the mapping

 $b: X \times X \to [0, \infty)$ such that the constant $s \ge 1$ satisfies the following conditions:

(b1)
$$b(x, y) = b(y, x) = 0 \Leftrightarrow x = y \text{ for all } x, y \in X$$

$$(b_2) \ b(x, y) = b(y, x) = 0 \text{ for all } x, y \in X$$

(b3)
$$b(x, y) \le s[b(x, z) + b(z, y)]$$
 for all $x, y, z \in X$

The pair (X, d) is then called a b-metric space.

II. MAIN RESULTS

A. The Following Theorem Generalizes Theorem

Theorem 2.1. Let (X, d) be a complete dislocated b-metric with $s \ge 1$.Let A and B be a non-empty closed subset of X. Let $T: A \cup B \to A \cup B$ be a self map such that $d(Tx, Ty) \le a_1 d(x, y) + a_2 d(Tx, x) + a_3 d(Ty, y) + a_4 d(Ty, x) + a_5 d(y, Tx)$ where $a_i \ge 0$, i = 1, 2, 3, 4, 5 and $a_1 + a_2 + a_3 + 2sa_4 + 2sa_5 < 0$. Then T has a unique fixed point in $A \cap B$.

Proof. Let
$$T^n \subseteq X, \{T^{2n}\} \subseteq A$$
 and $\{T^{2n+1}\} \subseteq B$. Fix $x \in A$. $d(T^2x, Tx) = d(T(Tx), Tx)$

$$\leq a_1 d(Tx, x) + a_2 d(T^2x, Tx) + a_3 d(Tx, x) + a_4 d(Tx, Tx) + a_5 d(x, T^2x)$$

$$\leq \ \ a_1 \, d(T \, x, \, x) \, + \, a_2 \, d(T^{\, 2} \, x, \, T \, x) \, + \, a_3 \, d(T \, x, \, x) \, + \, sa_4 \, \left[d(T \, x, \, x) \, + \, d(x, \, T \, x) \right]$$

+ sa5
$$[d(x,Tx) + d(Tx,T^2x)]$$

$$d(T^2x, Tx) \le a_1 d(Tx, x) + a_2 d(T^2x, Tx) + a_3 d(Tx, x) + 2sa_4 d(Tx, x)$$

+
$$sa5 d(x, Tx) + sa5 d(Tx, T^2x)$$

$$= (a_1 + a_3 + 2sa_4 + sa_5)d(Tx, x) + (a_2 + sa_5)d(T^2x, Tx)$$

$$\leq \frac{(a_1 + a_3 + 2sa_4 + sa_5)}{1 - (a_2 + sa_5)} d(Tx, x)$$

$$d(T^2x, Tx) \le kd(Tx, x)$$
, where $k = \frac{(a_1 + a_3 + 2sa_4 + sa_5)}{1 - (a_2 + sa_5)}$

Now,

$$\begin{array}{lll} d(T^3x,T^2x) & = & d(T(T^2x),T(Tx)) \\ & \leq & a_1 d(T^2x,Tx) + a_2 d(T^3x,T^2x) + a_3 d(T^2x,Tx) + a_4 d(T^2x,T^2x) \end{array}$$

$$\leq \ \ a_1 \ d(T^2x,Tx) + a_2 \ d(T^3x,T^2x) + a_3 \ d(T^2x,Tx) + sa_4 \ [d(T^2x,Tx) + d(Tx,T^2x)]$$

+ sa5
$$[d(Tx, T^2x) + d(T^2x, T^3x)]$$

$$\leq a_1 d(T^2 x, Tx) + a_2 d(T^3 x, T^2 x) + a_3 d(T^2 x, Tx)$$

$$+ 2sa4 d(T^2x, Tx) + sa5 d(Tx, T^2x) + a5 d(T^2x, T^3x)$$

$$\begin{array}{rcl} \mathsf{d}(\mathsf{T}^3 \, \mathsf{x}, \mathsf{T}^2 \, \mathsf{x}) & \leq & (\mathsf{a}_1 \, + \mathsf{a}_3 \, + 2\mathsf{s} \mathsf{a}_4 \, + \mathsf{s} \mathsf{a}_5 \,) \mathsf{d}(\mathsf{T}^2 \, \mathsf{x}, \mathsf{T} \, \mathsf{x}) \, + (\mathsf{a}_2 \, + \mathsf{s} \mathsf{a}_5 \,) \mathsf{d}(\mathsf{T}^2 \, \mathsf{x}, \mathsf{T}^3 \, \mathsf{x}) \\ & & \underbrace{(\mathsf{a}_1 \, + \mathsf{a}_3 \, + 2\mathsf{s} \mathsf{a}_4 \, + \mathsf{s} \mathsf{a}_5 \,)}_{\mathsf{d}(\mathsf{T}^2 \, \mathsf{x}, \mathsf{T} \, \mathsf{x})} \, \\ \leq & \underbrace{\mathsf{1} - (\mathsf{a}_2 \, + \mathsf{s} \mathsf{a}_5 \,)}_{\mathsf{d}(\mathsf{T}^2 \, \mathsf{x}, \mathsf{T}^2 \, \mathsf{x})} \\ \end{array}$$

$$d(T^3x, T^2x) \le kd(T^2x, Tx)$$
, where $k = \frac{(a_1 + a_3 + 2sa_4 + sa_5)}{(a_1 + a_3 + 2sa_4 + sa_5)}$

B. Fixed Point Theorem on Dislocated b-Metric Spaces

$$d(T^3x, T^2x) \le k[kd(Tx, x)]$$

$$d(T^3x, T^2x) \le k^2 d(Tx, x)$$
 induction,

$$d(T^{n+1}x, T^nx) \le k^n d(Tx, x)$$

In general $n, m \in N$ where m > n

$$\begin{array}{lll} \mathsf{d}(\mathsf{T}^{\,n}x,\mathsf{T}^{\,n+m} & \leq & \mathsf{sd}(\mathsf{T}^{\,n}x,\mathsf{T}^{\,n+1}\,x) + \mathsf{s}^2\,\mathsf{d}(\mathsf{T}^{\,n+1}\,x,\mathsf{T}^{\,n+2}\,x) + ... + \mathsf{s}^m\,\mathsf{d}(\mathsf{T}^{\,n+m-1}\,x) \\ & \leq & \mathsf{sk}^n\,\mathsf{d}(x,\mathsf{T}\,x) + \mathsf{s}^2\,\mathsf{k}^{\,n+1}\,\mathsf{d}(x,\mathsf{T}\,x) + ... + \mathsf{s}^m\,\mathsf{k}^{\,n+m-1}\,\mathsf{d}(x,\mathsf{T}\,x) \\ & \leq & \mathsf{sk}^n\,[1 + \mathsf{sk} + ... + (\mathsf{sk})^{m-1}\,]\mathsf{d}(x,\mathsf{T}\,x) \end{array}$$

$$d(T^n x, T^{n+m} \le sk^n \frac{1}{1 - sk^n} d(x, Tx)$$

$$d(T^n x, T^{n+m} x) \rightarrow 0 \text{ as } n \rightarrow \infty$$

Hence $\{T^n\}$ is a Cauchy sequence.

Since (X, d) is complete, Then $\{T^n\}$ coverages to some point $x \in X$. Since $\{T^{2n}\} \subseteq A$ and $\{T^{2n+1}\} \subseteq B$.

Thus $x \in A \cap B$

We show that Tx = x. Now,

$$d(Tx, x) = d(Tx, T^{2n}x)$$

$$\leq$$
 a1 d(x, x) + a2 d(T x, x) + a3 d(T 2n x, x) + a4 d(T 2n x, x) + a5 d(x, T x) Letting n $\rightarrow \infty$

$$d(T x, x) \leq a_1 d(x, x) + a_2 d(T x, x) + a_3 d(x, x) + a_4 d(x, x) + a_5 d(x, T x)$$

$$\leq$$
 sa₁ [d(x, Tx) + d(Tx, x)] + a₂ d(Tx, x) + sa₃ [d(x, Tx) + d(Tx, x)]

+
$$a4 [d(x,Tx) + d(Tx,x)] + a5 d(x,Tx)$$

$$\leq$$
 2sa₁ d(x, Tx) + a₂ d(Tx, x) + 2sa₃ d(x, Tx) + 2sa₄ d(x, Tx) + a₅ d(x, Tx)

$$\leq$$
 $(2sa_1 + a_2 + 2sa_3 + 2sa_4 + a_5)d(x, Tx)$

$$[1 - (2sa_1 + a_2 + 2sa_3 + 2sa_4 + a_5)]d(x, Tx) \le 0$$

Hence d(T x, x) = 0.

This implies Tx = x. Therefore, T has a fixed point.

Uniqueness: Let x and y be two fixed points of T, that is Tx = x and Ty = y

$$(x, y) = d(Tx, Ty)$$

$$\leq$$
 a1 d(x, y) + a2 d(T x, x) + a3 d(T y, y) + a4 d(T y, x) + a5 d(y, T x)

$$\leq$$
 a1 d(x, y) + a2 d(x, x) + a3 d(y, y) + a4 d(y, x) + a5 d(y, x)

$$\leq$$
 a1 d(x, y) + a2 s[d(x, y) + d(y, x)] + sa3 [d(y, x) + d(x, y)] + a4 d(y, x) + a5 d(y, x)

$$d(x, y) \le (a_1 + 2sa_2 + 2sa_3 + a_4 + a_5)d(y, x)$$

C. Thanga pandi and J.Maria Joseph

$$[1-(a_1 + 2sa_2 + 2sa_3 + a_4 + a_5)]d(x, y) \le 0$$

Hence d(x, y) = 0.

Therefore,x = y.

Hence,T has a unique fixed point.

Example 2.2. Let
$$X = R, A = [-2, 0]; B = [0, 2]$$
. Define $d(a, b) = {1 \over 2}[|a - b| + |a|]$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 5 Issue VIII, July 2017- Available at www.ijraset.com

+ |b|

Then d is the dislocated metric us define $T: A \cup B \rightarrow A \cup B$ by Ta = -a

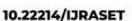
Then T is a cyclic mapping. Here ${}^{0}0^{0}$ is the unique fixed point.

III. ACKNOWLEDGEMENTS

The authors would like to thank the editor of the paper and the referees for their precise remarks to improve the presentation of the paper.

REFERENCES

- [1] Basha,ss. Veeramani,p: Best proximity pair theorems for multifunction with open fi- bres. J. Approx. theory 103,119-129(2000).
- [2] Enjouji, Y. Naknishi, M. Suzuki, T:A generalization of kannan's fixed point Theory Appl. 2009, Article ID 192872(2009).
- [3] Kikkawa, M. suzuki, T: Some Similarity between Contractions and Kannan mapping s. Fixed point Theory Appl. 2008, Article ID 649749 (2008).
- [4] Nakanishi, M. Suzuki, T: An observation on kannan mappings. Cent. Eur. J. math. 8,170-178 (2010).
- [5] Reich.S:Kannan fixed point theorem.Boll.Unione Mat.ltal.4,1-11(1971)
- [6] Shioji,N,Suzuki,T,Takahashi,W: Contraction mapping,Kannan mappings and metric completeness.proc.Am.Math.Soc.126,3117-3124(1998).doi:10.1090/S0002-9939-98-04605-X
- [7] Banch,S:Surles Operations dansles ensembles abstraits et leur application aux equation integrales.Fundam.Math.3,133-181(1922).
- [8] Kanna, R: Some results on fixed Points-II. Am. Math. Mon. 76, 405-408 (1969).
- [9] Kirk,WA,Srivasan,PS,Veeramani,P:Fixed points for mapping satisfying cyclic contractive conditions.fixed point theory 4,79-89(2003).
- [10] Karapinar, E, Erhan, IM: Best proximity on different type contractions. Appl. Math.inf.sci. 5,558-569 (2010).
- [11] Bakhtin,IA:The contraction principle in quasi metric spaces.ln:Factional Analysis,Vol.30,pp26-37(1989)



45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)