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Abstract: Various Public-Key Cryptographic Schemes rely upon security and performance among other functionalities. Since 
the introduction of Public-Key Cryptography by Diffie and Hellman in 1976, a number of schemes have been proposed based on 
Discrete Logarithm Problem.  Among these, Elliptic Curve Cryptography (ECC) is the most mysterious and not easily 
understood. It is based on algebraic curve arithmetic. The paper starts with brief introduction of Elliptic Curve Arithmetic. Many 
other cryptosystems based on Discrete Logarithm Problem were introduced using different curves like Hyper-elliptic Curve 
Cryptography, Edward Curve Cryptography, and Probability Symmetric Curve Cryptography etc. This paper presents all forms 
of curve based public key cryptographic schemes and their features. The properties of these curves have also been discussed. 
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I. INTRODUDCTION 
In the age of electronic connectivity across world, and viruses, fraud, eavesdropping, there is great need for security across 
networks. Network security protects data from unauthorized access. All data cannot be protected physically; the data that is being 
shared through network needs to be secured. Some hardware and software technologies are used to manage usability and integrity of 
data. To protect data, cryptography is used which helps in converting data to unintelligible code. Two processes are involved i.e. 
encryption and decryption. Two types of cryptographic techniques are private key and public key encryption. Private Key 
cryptography uses one shared key for encryption and decryption at sender and receiver’s end respectively where as public key 
cryptography uses two keys that need not to be shared. 
The idea of public key cryptography was given by Diffie and Hellman [1] in 1975 to address disadvantages of Private Key 
Cryptography. In this scheme, the keys shared are not kept secret but authenticity is maintained. And there is one important property 
that one cannot retrieve private key by knowing about public key. The security of Asymmetric Cryptosystems requires some 
fundamental security features i.e. Confidentiality, Non-repudiation and Key Authentication [2]. 
 A key pair is selected and computation is required to derive one key from another which is believed to be very difficult [3]. Various 
schemes that have been introduced are RSA, ElGamal and Elliptic Curve Cryptography.  RSA is based on factorization problem [4] 
.We will discuss here Elliptic curves and other curve based cryptosystems developed after it. 
This paper discusses various cryptosystems based on public key algorithm using algebraic curves. The most widely known 
algorithm i.e. Elliptic Curve Cryptography is described in section 2. Section 3 describes the use of Hyper-elliptic curves in 
cryptosystems. Section 4 presents other recently developed algorithms to replace ECC for harder security. Two such algorithms are 
Probability Symmetric Curve Cryptography (PSCC) and Sextic Curve Cryptography (SCC). Section 5 concludes the paper.    

II. ELLIPTIC CURVE CRYPTOGRAPHY 
A. Elliptic Curve 
Elliptic Curve Cryptography (ECC) is based on elliptic curve theory proposed by Miller [5] and Koblitz [6] which is used for 
creating smaller keys for encryption. The points on Elliptic curve form an abelian group. General equation of elliptic curves is: 

Y2=X3+AX2+B, where 
 A and B are integer constants and 4A2+27B≠0.  

B. Elliptic Curve Cryptosystem 
Elliptic curve cryptosystem is a technique based on Discrete Logarithm Problem(DLP) which states that -  If a point on elliptic 
curve let us say P is multiplied n times such that R= nP, where n is   sufficiently large then given P and R, it is difficult to find n [7]. 
This can be found by taking discrete log which takes very large time. So main operation in ECC is point multiplication with a large 
scalar.  ECC can be implemented in many fields like prime field, binary field and extended binary field. Scalar multiplication is the 
basic operation in ECC and its implementation must be computationally less expensive. ECC gives an advantage when limited 
memory devices are to be used. ECC is a complicated algorithm often used as hardware because its software implementation is not 
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very efficient for real time tasks. It consists of various arithmetic operations that can be configured on hardware easily. It is 
generally considered that, for operands of a few hundred of bits, S/M ∼ 0.8, M being the cost of a modular multiplication and S that 
of a squaring. The cost of a modular inversion is much higher than that of multiplication. In smartcards it has been observed that I/M 
∼ 100, I being the cost of a modular inversion[8]. 

C. Arithmetic of Elliptic Curve  
There are four basic operations possible on elliptic curves i.e. addition, subtraction, multiplication and inversion of points. Any 
operation on two points on the curve results into third point which also lies on the same curve. 
1) Addition: There is a chord-and-tangent property for addition operation on curves where two points if known can be used to get 

a third point on curve which is the addition of the given two points. The set of points on elliptic curves forms an abelian group 
where all the points if subjected to any mathematical operation such as addition or multiplication gives resulting points 
belonging to that set only. Here the resulting points lie on the curve itself. A point at infinity is considered and symbolically 
represented as ∞. By drawing a line through the two points taken randomly on a curve say P and Q, the third point of 
intersection on curve is the mirror reflection of the point R which is the arithmetic addition of these two points [9]. The explicit 
formulae for addition of points on elliptic curves are: 

X3 = Z2 - X1 - X2 (mod p) 
Y3 = Z (X1 - X3) - Y1  (mod p) where, 

Z = (Y2 - Y1) / (X2 - X1)  (mod p) 
2) Multiplication: Several multiplication algorithms exist like Kasturba [10] and Montgomery [11] algorithm. One that is used 

mostly is binary add and shift Montgomery algorithm [12]. We actually need two operations to complete one multiplication 
algorithm and this include a doubling operation also which needs to be explained. . 

3) Doubling: For adding any point to itself is the doubling operation and tangent rule applies here. The Tangent drawn through the 
point say P, intersects the curve on a point which is the mirror reflection of point 2P [7]. The explicit formulae for doubling the 
point on elliptic curve are: 

X3 = (3X1
2 + A / 2Y1 )2 – 2X1  (mod p) 

Y3 = (3X1
2 + A/2Y1) (X1 - X3) – Y1 (mod p) 

4) Inversion: Here division operation is replaced by inversion operation due to modulus operation involved. Multiplicative 
inversion is the most difficult operation during implementation of algorithm. For this problem, projective coordinates are 
introduced which when used instead of affine coordinates no inversion operation is required. 
 

III. HYPER-ELLIPTIC CURVE CRYPTOGRAPHY 
Definition (hyper-elliptic curve) Let K be a field and let K* be the algebraic closure of K. A Hyperelliptic curve C of genus g over 
K (g >= 1) is an equation of the form 

C: v2 + h(u)v = f(u) in K[u,v] , 
where h(u)  is a polynomial of degree at most g, f(u) is a monic polynomial of degree 2g+1. Hyper-elliptic curves do not have 
singular points [13]. 
In 1988, Koblitz [14] put forward this algorithm as an improvement to ECC. It is also based on discrete logarithm based problem. 
These cryptosystems are suitable for embedded processors, where less power must be used and time is also less because short 
operand size is possible. Selection of curve is the most important step while implementing hyper-elliptic curve cryptographic 
scheme. Factors like choice of curve, scalar multiplication method influence speed of encryption .To implement a discrete log 
cryptosystem using hyper-elliptic curves we need a curve for which arithmetic over field K can be efficiently implemented and the 
order of Jacobian of curve say J(K) of C should be divisible by  a prime number of at least 45 decimal digits. Assuming HEC of 
genus g over field Kq where q=pn, we can have qg possible divisors which form Abelian group on which group operations can be 
easily implemented. 

A. Advantages 
1) Main advantage of using this curve is high efficiency and shorter key length.  
2) Security of hyper-elliptic curve cryptosystems is reliable because it has exponent complexity and no attacking algorithm is yet 

found with sub exponent complexity.  
3) 60 bits of HECC match the security level of ECC with 180 bits and 1024 bits of RSA[15][16]. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                                               ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 
                                                                                                              Volume 5 Issue VII, July 2017- Available at www.ijraset.com 

 

  
 

1624 ©IJRASET (UGC Approved Journal): All Rights are Reserved 

4) If the hyper-elliptic curve is chosen very carefully, only pollard rho attack is possible on it to crack. 
 

B. Discrete Logarithm Problem in HEC 
The DLP on J[K] can be stated as follows: If we have two divisors say d1 and d2 which belong to J[K] , then finding an integer m is 
the problem such that d1=md2.  The operations include group addition and group doubling of divisors. Most general algorithm for 
addition and doubling is Cantor algorithm [17]. In this algorithm 1 inversion is required per addition and doubling operation which 
is very expensive operation [18]. 

IV. PSCC AND SCC 
These two curves are a new milestone in symmetric curve cryptography. There are many algebraic curves based on which many 
cryptosystems have been designed. 

A. Probability Symmetric Curve 
Probability Symmetric Curve is a cubic curve widely used in theory of probability. The standard form of the curve  is denoted by 
C(b,c) :  

6y2 = b {11 - 18x + 9x2 – 2x3} + c 
Using the curve equation and a line which intersects the curve three times, we get a monotonic polynomial in x. The cubic 
polynomial has three roots of which two roots are our two known points say P and Q, third root can be calculated by arithmetic 
addition of these two points [19]. Thus PSCC gives a new approach to point addition and point doubling. The addition can be 
expressed as: 

XP+Q = - XP - XQ + (9a – 6j2)/2a  (mod p) 
YP+Q  = j(XP – XR) – YP (mod p) 

B. Sextic Curve 
It is another new approach which ensures harder security as compared to ECC. Sextic Curve or Atriphthaloid Curve is a six 
degree curve having large search space if DLP is considered here. General form of equation of curve denoted by S(a,b) : 

X4 (X2 + Y2) – (aX2 – b) 2 = 0 
The discriminant of the curve must not be zero because if it is zero, curve will have cusps and curve will not be smooth which is 
not preferred in group operations on curves. The method of performing point addition and point doubling operation on this curve 
is same as PSCC. The equation produces different formulae for arithmetic addition and doubling of points on this curve. We 
have XP+Q = - XP - XQ – (1+2jk) / j2 (mod p) 

and YP+Q = j (XP – XP+Q) – YP (mod p), where line of intersection has equation Y=jX + 
k [20]. 
Performance of PSCC and SCC when evaluated by using communication through sensor networks, the simulation results showed 
lesser amount of time for encryption in both as compared to ECC. For 64 bit key size PSCC takes 0.1 ms while ECC takes 0.5 ms 
[21]. 

V. CONCLUSION 
This paper gives basic knowledge about various curve based cryptosystems. Shorter bit lengths in HECC have implementation 
advantage over ECC. It allows for bit lengths 50-80 while ECC allows 160-256 bit length keys. PSCC and SCC allowed much 
lesser time for encryption as compared to ECC algorithm. These three cryptosystems propose an improvement to ECC and can be 
implemented for higher level of secrecy and lesser amount of time.  
Further, we would focus on other finite fields used with these curves like binary field, Optimized Extension Fields (OEF) etc. in 
future 
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