

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: VIII Month of publication: August 2017 DOI: http://doi.org/10.22214/ijraset.2017.8052

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Effect of Particle Gradient on Stress Analysis of a FG Disc

Sujata Goyal¹

¹Department of Mathematics, A. S. College, Khanna-141402

Abstract: In the present study, we have investigated stress analysis of a Functionally Graded (FG) Rotating Disc. The disc under observation is made of Al-SiC_p composite. The effect of increasing particle gradient (PG) on strain in the disc has been investigated. It is concluded that the strains in the FGM disc reduces significantly with increasing SiC_p particle gradient in Al matrix.

Keywords: FGM, Particle Gradient, disc

I. INTRODUCTION

Functionally Graded Material (FGM) is an advanced material in which the volume content of one of the constituent varies [1]. Rotating disc is widely used part in many mechanical applications [2]. Several authors investigated effect of FGM on stress response by assuming arbitrary material properties [2-4].

In the present work, a study is conducted to investigate the stress analysis in a FGM rotating disc by assuming actual profile of material properties. In a previous study it is studied that decreasing profile of SiC_p in Al matrix is beneficial towards reducing deformations. Therefore, it has been decided to study effect of particle gradient on stress response of a rotating FGM disc.

II. MATHEMATICAL FORMULATION

The stresses (σ_r and σ_{θ}) and strains (\mathcal{E}_r and \mathcal{E}_{θ}) for isotropic disc are given by [2],

$$\varepsilon_{r} = \frac{1}{E(r)} (\sigma_{r} - v\sigma_{\theta})$$

$$\varepsilon_{\theta} = \frac{1}{E(r)} (\sigma_{\theta} - v\sigma_{r})$$
(1)
(2)

Let suppose a rotating disc ($r_a = 40 \text{ mm}$ and $r_b = 100 \text{ mm}$) which is assumed to be made of Al-SiC_p composite. The content of SiC_p in the Al matrix is varying along the radius,

$$V(r) = V_o \left(\frac{r}{b}\right)^n \tag{3}$$

Where V_{o} is the SiC_p content at the outer radius and n is SiC_p gradation index.

By equating same volume content for uniform composite disc and FGM disc, we get,

$$\int_{a}^{b} 2\pi r t V(r) dr = V_{av} \left[\pi (b^{2} - a^{2}) t \right]$$
(4)

Substituting eq. (1) into eq. (2), we get,

$$V_o = \frac{V_{avg} b^n (2+n) (b^2 - a^2)}{2 (b^{2+n} - a^{2+n})}$$
(5)

The density (ρ) and Young's modulus (E) are varying according to the power law,

$$\rho(r) = \rho_0 \left(\frac{r}{b}\right)^{n_1} \text{ and } E(r) = E_0 \left(\frac{r}{b}\right)^{n_2}$$

The equilibrium equation for a rotating FGM disc ($\omega = 1570 \text{ rad/s}$) is given as [1],

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

$$\frac{d}{dr}[r\sigma_r] - \sigma_\theta + \rho(r)\omega^2 r^2 = 0$$
(6)

Constitutive Eqs. (1-2) are solved with eq. (7) to find stresses as given by,

$$\sigma_{r} = M_{1}r^{\frac{n_{2}+m-2}{2}} + M_{2}r^{\frac{n_{2}-m-2}{2}} + Ar^{2+n_{1}}$$

$$\sigma_{\theta} = \left[\left(\frac{n_{2}+m}{2} \right) M_{1}r^{\frac{n_{2}+m-2}{2}} + \left(\frac{n_{2}-m}{2} \right) M_{2}r^{\frac{n_{2}-m-2}{2}} + (3+n_{1})Ar^{2+n_{1}} \right] + \rho(r)r^{2}\omega^{2}$$
(8)
$$\rho_{0} = \left[\left(\frac{n_{2}+m}{2} \right) M_{1}r^{\frac{n_{2}+m-2}{2}} + \left(\frac{n_{2}-m}{2} \right) M_{2}r^{\frac{n_{2}-m-2}{2}} + (3+n_{1})Ar^{2+n_{1}} \right] + \rho(r)r^{2}\omega^{2}$$
(9)

Where $A = \frac{-\rho_o \omega^2 (3 + v + n_1 - n_2)}{b^{n_1} (8 + n_1^2 + 6n_1 - n_1 n_2 - 3n_2 + vn_2)}$ and $m = \sqrt{n_2^2 - 4vn_2 + 4}$

The results are calculated for rotating FGM disc under free-free boundary conditions.

III. RESULTS AND DISCUSSION

A code has been developed for the computation process. The effect of increasing particle gradient (PG) has been investigated on the stress response. (Refer Table 1).

n	SiC _p Content (vol %)			ρ_{o}	n_1	E_{o}	n_2
	V_{a}	V_b	PG		1	0	2
0	20	20	0	2801.12	0	146	0
-0.5	26.66	16.86	9.8	2783.67	-0.019	133.56	-0.2678
-1	35	14	21	2764.64	0407	121	.550

Table 1: Description of FGM discs

It is clear above from Fig. 1 that radial strains in the FGM disc are lowest in FGM disc with highest particle gradient (n = -1) as compare FGM disc (n = -0.5) and composite disc (n = 0). The effect of increasing PG on the tangential strain in the FGM disc is similar to radial strain.

Fig. 1: Effect of particle gradient on radial and tangential strains.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

IV. CONCLUSIONS

- A. It is concluded that with the rise in particle gradient in the FGM disc, the radial and tangential strains can be significantly minimized.
- *B.* It is further observed that the chances of distortion in the FGM disc significantly reduced with the rise in SiC_p particle gradient in the Al matrix.

REFERENCES

- Manish Garg, B. S. Salaria and V. K. Gupta (2012) Effect of disc geometry on the steady state creep in a rotating disc made of functionally graded materials, Materials Science Forum, vol. 736, pp. 183-191.
- H. Callioglu, N.B. Bektas and M. Sayer (2011) Stress analysis of functionally graded rotating discs analytical and numerical solutions, Acta Mechanica Sinica, vol. 27(6), pp. 950-955.
- [3] Afsar, A.M. and Go, J. (2010) "Finite element analysis of thermoelastic field in a rotating FGM circular disk", Applied Mathematical Modelling, vol. 34 (11), pp. 3309-3320.
- [4] M. Bayat, M. Saleem, B.B. Sahari, A.M.S. Hamouda and E. Mahdi (2007) Thermo elastic analysis of a functionally graded rotating disk with small and large deflections, Thin-Walled Structures, vol. 45, pp. 677-691.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)