

1 IV November 2013

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 20

The Role of Software Engineering Ontology
Model & Design for Multi-Site Software

Development
Kalyana Chakravarthy Dunuku1

HOD, Dept. Of CSE1,
Sri Venkateswara Engineering College1,
Piplikhera, Sonepat, Haryana-1310391.

kc7610@gmail.com1

Komal2

Asst. Prof, Dept. Of CSE2.
Sri Venkateswara Engineering College2

Piplikhera, Sonepat, Haryana-1310392

komal.it07517@gmail.com2

V. Saritha3

Assco. Prof., Dept. Of CSE3

Sri Kavitha Engg. College3

Karepalli, Khammam-5071223

saritha.vaddeboina@gmail.com3

ABSTRACT: Ontology is important concept for software engineering to formally represent knowledge in a way software can
process the knowledge and reason about it. The software engineering ontology assists in defining information for the
exchange of semantic project information framework. This paper gives an analysis of what software engineering ontology
model is, what it consists of and what it is used for in the form of usage example scenarios. The usage scenarios presented in
the paper highlight characteristics of the software engineering ontology model and design in UML. The software
engineering ontology assists in defining information for the exchange of semantic project information and is used as a
communication framework. Its end users are software engineers sharing domain knowledge as well as instance knowledge
of software engineering.

Keywords:- Software Engineering, Ontology Development, Multi-site Software Development Knowledge Sharing and
Knowledge Engineering.

1. INTRODUCTIONS.

Having realized the advantages of multi-site software
development, major corporations have moved their software
development to countries where employees are on
comparatively lower wages. It is this imperative of financial
gain that drives people and businesses to multi-site
development and the Internet which facilitates it. Software
development has increasingly focused on the Internet which
enables a multi-site environment that allows multiple teams
residing across cities, regions, or countries to work together in
a networked distributed fashion to develop the software.

The development of the software in various fields, have
become more cushy and comfortable. Realizing the pros of
multisite software development, major MNC’s and the
corporate sectors have moved their business to the countries
where the employees work for curtail and pare salaries.
Software development has increasingly focused on the

Internet, which enables a multisite environment that allows
multiple teams residing across cities, regions, or to countries
to work together in network distributed fashion to develop the
software. However, the effective communication and
coordination across multiple sites is extremely important for
the global software development. Team members, team
leaders and the managers who carry out, control, manage
different tasks and activities respectively may not be located
at the same site in a multisite environment.

Consider a scenario of a software development process
where the team members work in a particular site and the
person who manage them, their team leader is at different site
who controls them and collects, integrates the completed
modules for further enhancement of the software project.

As the team completes their respective module and send
the same to the team leader. They draft in their own form of
representations for conclusions on the completed module with

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 21

respect to their culture, customs and tradition which they
follow in their day to day life. It is obvious that they might
have not come face to face and never met as they work online.
So, strict software engineering principles should be followed,
to have a better communication among the teams and the team
members.

The incongruity in analysis, design, documentation,
presentation, and diagrams could prevent proper access by
other stake holders in a particular software project. Seldom
issues of this kind are kept enigmatic. In reference to the
above discussed problems, the software engineering has a
commonly understood body of knowledge and is an easily
learnt subject that includes some of the latest technology and
methodology that is easily adopted. As the teams at different
sites refer to various texts in the same software engineering
domain, each individual have a personal guide and when they
communicate with each other their terminology could be quite
startling and unusual. This leads to inconsistency and
equivocation among the teams. Communication is the real
challenge that everyone face in their daily life and the
affective communication is an important part of a
successful business. Ontology is an important part of
developing a shared understanding across a project to lessen
the problems.

1. ONTOLOGY IN SOFTWARE ENGINEERING

The term ‘Ontology’ is derived from its usage in
philosophy where it means the study of being or existence as
well as the basic categories [1]. Therefore, in this field, it is
used to refer to what exists in a system model. An ontology,
in the area of computer science, represents the effort to
formulate an exhaustive and rigorous conceptual schema
within a given domain, typically a hierarchical data structure
containing all the relevant elements and their relationships and
rules (regulations) within the domain [2].

An ontology, in the artificial intelligence field, is an
explicit specification of a conceptualisation [3, 4]. In such an
ontology, definitions associate the names of concepts in the
universe of discourse (e.g. classes, relations, functions) with a
description of what the concepts mean, and formal axioms that
constrain the interpretation and well-formed use of these terms
[5]. For example, by default, all computer programmes have a
fundamental ontology consisting of a standard library in a

programming language, or files in accessible file systems or
some other list of ‘what exists’.

However, the representations are sometimes poor for
certain problem domains, so more specialised schema must be
created to make the information useful and for this we utilise
ontology. An abstract view of representing the software
engineering knowledge is shown in Fig. 1. The whole set of
software engineering concepts representing software
engineering domain knowledge is captured in ontology. Based
on a particular problem domain, a project or a particular
software development probably uses only part of the whole set
of software engineering concepts. The specific software
engineering concepts used for the particular software
development project representing software engineering sub-
domain knowledge are captured in ontology. The generic
software engineering knowledge represents all software
engineering concepts, while specific software engineering
knowledge represents some concepts of software engineering
for the particular problem domain.

The actual content and the domain are represented
in the fig 2 with Semantic and the Pragmatic representations
respectively. The content in the semantics (Actual meanings)
area can be Stuff, Things, and Relationships. The Domains in
the pragmatic (Dealing or concerned with facts or actual
occurrences) area can be Knowledge domain, Applications
domain, and Functional domain. Combining both the Content
and the Domain knowledge forms the basis for the Ontology.
A simple and very regular ontological representation can be a
standard library in a programming language environment
which has all the methods, attributes, classes and packages
that gives the answer for the preliminary question of “What
Exists” in a programming language..However, some
Representations may be poor due lack quality in design,
implementation.

For example, if a project uses purely object-
oriented methodology, then the concept of a data flow
diagram may not necessarily be included in specific concepts.
Instead, it includes concepts like class diagram, activity
diagram and so on. For each project in the developmental
domain, there exists project information or actual data
including project agreements and project understanding.

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 22

The project information especially meets a particular project
need and is needed with the software engineering knowledge
to define instance knowledge in ontology. Note that the
domain knowledge is separate from instance knowledge. The
instance knowledge varies depending on its use for a
particular project. The domain knowledge is quite definite,
while the instance knowledge is particular to the problem
domain and developmental domain in a project. Once all
domain knowledge, sub-domain knowledge and instance

knowledge are captured in ontology, it is available for sharing
among software engineers through the Internet.

All team members, regardless of their location, can query the
semantically linked project information and use it as the
common communication and knowledge basis for raising
discussion matters, questions, analysing problems, proposing
revisions or designing solutions and the like.

Fig.1 Schematic overview of software engineering knowledge representation.

Fig.2 Ontology with its ‘Content’ and the ‘Domain’ Concepts

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 23

Software engineering domain knowledge constructs
should be sought in ontology, a well-founded model of reality.
Ontology is used to analyse the meaning of common
conceptual modelling constructs [6] which accurately reflect
the world. The notion of a concrete thing applies to what
software engineers perceive based on software engineering
domain knowledge. In this light, the notion of ontology is a
solution for software engineering knowledge representation.
When the knowledge of the software engineering domain is
represented in a declarative formalism, the set of software
engineering concepts, their relations and their constraints are
reflected in the representation which represents knowledge.
Thus, the software engineering ontology can be defined by
using a set of software engineering representational terms.
Then a conclusion from the knowledge of what is can be
determined.

In order for the software engineering domain
knowledge to be shared amongst software engineers or
applications, agreement must exist on the topics about which
information is being communicated. The issue of ontological
commitment is described as the agreement about concepts and
relationships between those concepts within ontology [4].
When the software engineering ontology is committed, it
means agreement exists with respect to the semantics of the
concepts and relationships represented.

The main purpose of the software engineering ontology is to
enable communication between computer systems or software
engineers in order to understand common software engineering
knowledge and to perform certain types of computations. The
key ingredients that make up the software engineering ontology
are a vocabulary of basic software engineering terms and a
precise specification of what those terms mean. For software
engineers or computer systems, different interpretations in
different contexts can make the meaning of terms confusing
and ambiguous, but a coherent terminology adds clarity and
facilitates a better understanding. Software engineering
ontology has specific instances for the corresponding software
engineering concepts. These instances contain the actual data
being queried in the knowledge-based applications..

2. SOFTWARE ENGINEERING ONTOLOGY
MODELLING

Various formalisms have been developed for
modelling ontologies, notably the Knowledge Interchange
Format (KIF) [7] and knowledge representation languages
descended from KL-ONE [8]. However, these representations
have had little success outside Artificial Intelligence (AI)
research laboratories [9, 10] and require a steep learning
curve. KIF provides a Lisp-like syntax to express sentences of
first order predicate logic and descendants of KL-ONE
include description logics or terminological logics that
provide a formal characterisation of the representation [11].
Traditionally, AI knowledge representation has a linear
syntax.

There have been recent efforts, documented in the
literature [12-14], to use UML for ontology modelling. In
UML, ontology information is modelled in class diagrams and
Object Constraint Language (OCL) constraints [13].
However, there is controversy regarding whether or not
ontology goes beyond the standard UML modelling, so that
standard UML cannot express advanced ontology features
such as constraints or restrictions, and [15] cannot totally
conclude whether the same property was attached to more
than one class, and does not support the creation of a
hierarchy of properties.

The main aim is not only to create a graphical
representation to make it easier to understand, but
importantly, this model should be able to capture the semantic
richness of the defined software engineering ontology. In the
next sections, graphical notations are presented to facilitate
the software engineering ontology modelling process. Some
concepts or terms represented by the notations have multiple
presentations.

3.1 Class Notations

The notation of the software engineering ontology
class is represented as a rectangle with two compartments.
The top compartment is for labelling the class and the second
compartment is used for presenting properties, if there are
any, related to the class or to an XML schema data type
value. It is mandatory to specify the word ‘<<Concept>>’
above the class label in the top compartment. The
generalisation symbol appears as a line with one end empty
and the other with a hollow triangle arrowhead. The empty

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 24

end is always connected to the class being subsumed,
whereas the hollow arrowhead connects to the class that
subsumes. Fig. 2 shows an example of a class
ClassRelationshippresentation and its subclasses.

Fig.3. Class ClassRelationship presentation and its sub-
classes

3.2 Property Relation, Characteristic and Restriction
Notations

Notations for software engineering ontology
properties include data type property, object property, its
characteristics, its restrictions, and association class attached
property. The data type property of the software engineering
ontology class can be expressed in the bottom compartment
of class notation. This is an alternative design for data type
properties. That means the top compartment is called the
‘domain’. In the bottom compartment, notation formats as in
the order of data type property name, its characteristic, its
type (e.g. String, Integer) and its restriction. The type of data
type property is considered as a range. The characteristics of
data type property can be either functional or non functional
represented bythe words ‘Single’ or ‘Multiple’ respectively.
An enumeration in software engineering ontology is
represented in curly brackets ({}).

Fig. 4 expresses that class ClassOperationhas data
type property Class_Operation_Namewhich is functional and
its type is String. It also defines functional data type property
Class_Operation_Visibilityto relate a set of data values of
‘public’, ‘private’ and ‘protected’

Fig.4. Class ClassOperation presentation and its
data type properties

The object property of the software engineering
ontology can be expressed in the bottom compartment of
class notation like data type properties. This is an alternative
design for object property. In this manner, the top
compartment is still called its domain. Notation format in the
bottom compartment is the same as the order of the object
property’s name, its characteristics, class name (its range),
and its restriction. Class name expression as a range can
assert the complex class description such as union
(represented by symbol ‘U’), intersection (represented by
symbol ‘∩’). In addition, an object property can be expressed
as an arrow with an open arrowhead and with a text label of
the object property’s name. This is an alternative design for
object properties.

The arrow points from the domain of property to the
range of property. Its restrictions can be expressed in the
bracket after its name. Fig.5 shows class Classand its
properties. Symbols ∀, ∃, and represent restrictions
allValueFrom, someValueFrom, and hasValue respectively.
For the cardinality restriction, symbols equal =, greater than
and equal to >and less than and equal to <respectively
represent cardinality specifying the exact number, minimum
cardinality specifying the minimum number and maximum
cardinality specifying the maximum number.

The asterisk * is used as part of the specification to
indicate the unlimited upper bound. Fig. 6 (a) shows that at
least two relations Relating_Activityrelate instance from
class JoinTransitionto class Activity and the property
Related_Activityrestricts instance from class
JoinTransitionto exactly one instance of class Activity. In
other words, in join transition (from activity diagram) there
are at least two related activities transited into one related
activity as shown in Fig. 6 (b).

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 25

Fig.5 Class Class presentation and its properties

Fig. 6 Class JoinTransition presentation and its properties

3.3 Instance Notation

An instance notation is represented as an ellipse
with a dotted line attached to its class or property. If it is an
instance of property, then the ellipse contains the property
name followed by a colon and then the instance name.
Unlike an instance of class, in the ellipse there is only the
instance name. To make it easy to read, a dotted line is
attached to most of the class name or property name of its
class instance or property instances. Fig. 7 shows populating
the UML class diagram shown in Fig. 7 (a) into the ontology
model shown in Fig. 7 (b) as instances.

Fig. 7. Presentation of instances of classes and properties

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 26

3. IMPLEMENTATION OF SOFTWARE ENGINEERING
ONTOLOGY AND DESIGN

A process of design in the software engineering
ontology refers to the process of design concepts, concepts
hierarchy, relations, and constraints in the software
engineering domain. Sources of software engineering
knowledge are from the software engineering textbook of Ian
Sommerville [17] and the Software Engineering Body of
Knowledge (SWEBOK) [18] upon which we base our
design. The software engineering ontology contains 362
concepts and 303 relations. Due to limited space, in this
section we will illustrate the design by choosing some
specific examples of common, widely-used concepts such as
UML class diagram, UML activity diagram, UML use case
diagram, entity diagram.

4.1 Ontology Model for a UML Class Diagram

The first example is a UML class diagram ontology.
A class diagram is a diagram that represents a set of classes
and their interrelationships [16]. Commonly, the structural
details of classes expand their attributes and their operations.
The relationships within these five main classes are:
dependencies, generalisations, aggregations, compositions,
and associations.

The relationships of aggregations, composition and
association are used to structure a class, so in the ontology
model of class diagrams, they are grouped together. Fig. 8
shows the UML class diagram ontology.

4.2 Ontology Model for an Entity-Relationship Diagram

An entity-relationship diagram represents
conceptual models of data stored in information systems
[16]. Fig. 9 shows an ontology model of entity-relationship
diagrams. There are three main basic components in the
entity-relationship diagrams which are entities, attributes and
relationships.

Entity attributes can be classified as being simple,
composite or derived. A simple attribute is composed of a
single component and a composite attribute is composed of
multiple components. In the ontology model, cardinality

restriction in relation has Subdivided Attribute defines
attributes as being either simple or composite.

A derived attribute is based on another attribute(s)
and refers to relation has Derived Attribute restricting at least
one relation link to ontology classEntitiyAttribute. Key can
be defined as attributes of super key, alternate key, primary
key, or candidate key. This refers to relation Entity Attribute
Key in the ontology model. An attribute can have a single or
greater-than-one value. In the ontology model, cardinality
restriction from relation Entity Attribute Value defines
having a single or greater-than-one value. There are three
main degrees of entity relationships: unary, binary and
complex. The complex entity relationship can be further
divided into quaternary and ternary.

In the ontology model, cardinality restriction
constrains the number of entities that participate in a
relationship. This means that in the ontology view there is
only one entity i.e. relation Entity1. For a binary
relationship, there are two entities in the relationship i.e. in
relations Entity1and Entity2; while in a ternary relationship,
there are three entities in the relationship i.e. in relation
Entity1, Entity2, and Entity3. For a quaternary entity
relationship, there are four entities in the relationship i.e. in
relations Entity1, Entity2, Entity3, and Entity4.In an entity
relationship, cardinality can be specified as a string which
can be a string of 1..1 (one and only one), 0..* (zero or
more), 1..* (one ormore), 0..1 (zero or one) as shown in the
ontology model. Attributes can also be assigned to
relationships referring to relation has Attribute on
Relationships in the ontology model.

4.3 Ontology Model for a UML Activity Diagram
An activity diagram shows the control flow from

activity to activity [27]. Mainly, activity diagrams contain
activities, transitions, swimlane, and objects. A locus of
activities is specified by a swimlane. This refers to relation
in_Swimlanein the ontology model of activity diagrams in
Figure 10. Every activity belongs to exactly one swimlane;
however, transition may force it to cross lanes. This means
maximum cardinality restriction in relation in_Swimlane.
Objects may be involved in the flow of control associated
with an activity diagram. This refers to relations
set_Object_Flowand its inverse, get_Object_Flow.

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 27

Transitions of activities are classified into four main
transitions. Firstly, normaltransition shows the path from one
activity to the next activity. This means that, ontology class
NormalTransitionthat has a cardinality restriction, restricts
only the one activity in the relations Related_Activityand
Relating_Activity. Secondly, special transition is further
divided into an initial and a stop transition. The initial
transition is where the activity diagrams start. This means
that, ontology class Startwhich has a cardinality restriction,
restricts at least one activity in relation
Related_Special_Activitybut no activity in relation
Relating_Special_Activity.

4.4 Ontology Model for a UML Use Case Diagram

A use case diagram shows a set of use cases and
actors and their relationships. Commonly, use case diagrams
contain actors, use cases, and relationships. Figure 11 shows
an ontology model of use case diagrams. Actors and use
cases refer respectively to ontology classes Actor and
UseCase. System boundary referring to ontology class
SystemBoundary defines use cases limits.

Relationships between use cases, referring to
ontology class UseCaseRelationship are categorised into four
types of, firstly, generalisation relationship – referring to
ontology class GeneralisationRelationship secondly,

association relationship – referring to ontology class
AssociationRelationship; thirdly, include relationship –
referring to ontology class IncludeRelationship; and lastly,
extend relationship – referring to ontology class
ExtendRelationship. Only the association relationship defines
the relationship between actors and use cases, and only the
generalisation relationship defines the relationship between
actors. Based on the design of software engineering ontology
as shown by the above examples, software engineering
ontology was implemented.

5. SOFTWARE ENGINEERING ONTOLOGY
EVALUATION

The software engineering ontology has been
implemented in the OWL and deployed on a platform. It can
be accessed at www.seontology.org. This section is devoted
to evaluating the software engineering ontology through the
deployed ontology on the platform. Software engineering
knowledge, formed into software engineering ontology, helps
communications among team members and provides
consistent understanding of the domain knowledge.

Software engineering ontology, together with its
instance knowledge, is used as a communication framework
within a project,

Fig. 8 UML class diagram ontology

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 28

Fig. 9 Entity diagram ontology

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 29

Fig.10 UML activity diagram ontology

Fig.11 UML usecase diagram ontology

thereby providing rational and shared understanding of
project matters. In the platform, software engineering
instance knowledge, in accordance with domain knowledge
that is described in software engineering ontology, is
extracted. By consulting the software engineering ontology,
the platform enables references of software engineering
domain knowledge and enables extraction of instance
knowledge. For example, class diagrams referred to in the
software engineering ontology assert how a set of classes is
formed in the diagram. The specification imposing a
structure on the domain of class diagrams i.e. elicitation of
each class consists of class name, class attributes, class
operations and relationships hold with other classes. Using
software engineering domain knowledge, together with
instance knowledge, the platform dynamically and
automatically acts for a certain class instance that the
member navigates to retrieve accordingly attribute instances,
operation instances, and relationship instances together with
the related class instance details. Fig. 12 shows examples of
instances of class diagrams ontology that are navigated in the
platform. In Fig. 12(a), Classinstance CR_Customeris
navigated to consequently retrieve ClassAttributeinstances
and ClassOperationinstances.

ClassRelationshipinstances can also be navigated to
subsequently retrieve Classinstances that hold in the
relationship and applicable properties of the relationship. For
example, in accessing ClassAssociationinstance,
Classinstances held in the relationship and properties like
role name and cardinalities are automatically retrieved as
shown in Fig. 12(b). Similarly, if those Classinstances are
accessed, then a list of ClassAttributeinstances and a list of
ClassOperationinstances are retrieved to show its attributes
and its operations respectively. In accessing each
ClassAttributeinstance, details of attribute’s name, attribute’s
data type, and attribute’s visibility are shown as referred to
ClassAttributeontology in the software engineering ontology.
In Fig. 12(c), navigating ClassAttributeinstance
CR_CustomerID, its name of ‘Customer ID’, its data type of
‘integer’, and its visibility of ‘public’ can be revealed. The
same as ClassOperation ontology referred in the software
engineering ontology, in accessing each
ClassOperationinstance, details of operation’s name,
operation’s visibility, and operation’s parameters and
parameters’ data type can be retrieved.

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 30

Fig. 12 Examples of instances of class diagrams ontology being navigated in the platform

6. CONCLUSION

In this paper, we have analysed the characteristics of
software engineering ontology. We have then defined
graphical notations of modelling software engineering
ontology as an alternative formalism. The modelling
notations are used to design software engineering ontology.
We have only covered some distinguished part of modelling
domain knowledge of software engineering as example. The
practical software engineering ontology has been
implemented and deployed. Deployment has been discussed
in aspects of knowledge sharing and communication
framework.

The evaluation of the ontology is presented of its
useful in practice. Finally, the deployed software engineering
ontology applied to the realities of distributed development is
given to demonstrate its real value to the software
engineering ontology.

However, there are many improvements that can be
made through future work which could consider software
engineering ontology evolution. It is a case of software
engineering domain knowledge changing with the
introduction of new concepts, and change in the
conceptualisation as the semantics of existing terms have
been modified with time.

www.ijraset.com Vol. 1 Issue IV, November 2013
ISSN: 2321-9653I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C EAN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 31

This is totally outside the scope of this study
because we assume that software engineering domain
knowledge is mature and has undergone no further changes.
Instead, instantiations in the software engineering ontology
change with corresponding changes to the ontology.

7. REFERENCES

[1]. Witmer, G. Dictionary of Philosophy of Mind -
Ontology. 2004 [cited May 11, 2004]; Available from:

http://www.artsci.wustl.edu/~philos/MindDict/ontology.html
.

[2]. Wikipedia. Ontology (computer science) From
Wikipedia, the free encyclopaedia. 2006 [cited 8 June 2006];
Available from:

http://en.wikipedia.org/wiki/Ontology_%28computer_scienc
e%29.

[3]. Gruber, T.R. A translation approach to portable ontology
specification. in Knowledge Acquisition. 1993.

[4]. Gruber, T.R. Toward principles for the design of
ontologies used for knowledge sharing. in International
Workshop on Formal Ontology in Conceptual Analysis and
Knowledge Representation. 1993. Padova, Italy: Kluwer
Academic Publishers, Deventer, The Netherlands.

[5]. Beuster, G. Ontologies Talk given at Czech Academy of
Sciences. 2002 [cited; Available from:
http://www.unikoblenz.de/~gb/papers/2002_intro_talk_ontol
ogy_bang/agent_ontologies.pdf.

[6]. Wand, Y., V.C. Storey, and R. Weber, An Ontological
Analysis of the Relationship Construct in Conceptual
Modeling.ACM Transactions on Database Systems, 1999.
24(4): p. 495-528.

[7]. Genesereth, M.R. Knowledge Interchange Format – draft
proposed American National Standard. 1998 [cited;
Available from: http://logic.stanford.edu/kif/dpans.html.

[8]. Brachman, R.J. and J.G. Schmolze, An overview of the
KL-ONE knowledge representation system, in Cognitive
Science. 1985. p. 171-216.

[9]. Farquhar, A., R. Fikes, and J. Rice. The Ontolingua
Server: A Tool for Collaborative Ontology Construction. in
10th Knowledge Acquisition for Knowledge-Based Systems
Workshop. 1996. Banff, Canada.

[10]. MacGregor, R., Inside the LOOM classifier.SIGART
bulletin, 1991. 2(3): p. 70-76.

[11]. Genesereth, M.R. and R.E. Fikes, Knowledge
Interchange Format Version 3 Reference Manual. 1992,
Stanford University Logic Group.

[12]. Duric, D., MDA-based Ontology
Infrastructure.Computer Science and Information Systems,
2004. 1(1).

[13]. Kogut, P., et al., UML for ontology development.The
Knowledge Engineering Review 2002. 17(1): p. 61 - 64.

[14]. Evermann, J., A UML and OWL description of
Bunge’s upperlevel ontology model Software and Systems
Modeling, 2008.

[15]. Gašević, D., D. Djurić, and V. Devedžić, Model Driven
Architecture and Ontology Development 2006: Springer.

[16]. Bourque, P., et al. Guide to the Software Engineering
Body of Knowledge. 2004 Feb. 16, 2005.

[17]. Sommerville, I., Software Engineering. 8th ed. 2004:
Pearson Education Limited.

[18]. Bourque, P. SWEBOK Guide Call for Reviewers. 2003
[cited 29 May 2003]; Available from:

