

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: VIII Month of publication: August 2017 DOI: http://doi.org/10.22214/ijraset.2017.8184

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

New functions in BiČech sgβ-Biclosure spaces

M. Divya Bharathi¹, A. Francina Shalini²

¹M.Phil, Research Scholar, ²Assistant Professor Department of Mathematics Nirmala College for Women, Coimbatore, India.

Abstract: The aim of this paper is to introduce the concept of BiČech sgß –continuous functions, BiČech sgß-Irresolute functions, Totally BiČech sgß –continuous functions functions and Slightly BiČech sgß –continuous functions in Biclosure spaces and investigate their characterizations.

Keywords: BiČech sgß-closed sets, BiČech sgß-open sets, BiČech sgß – continuous, BiČech sgß Irresolute, Totally BiČech sgß – continuous functions and Slightly BiČech sgß - continuous functions.

I. INTRODUCTION

Čech spaces were introduced by Eduard Čech [3] (i.e., sets endowed with a grounded, Extensive and additive closure operators) and studied by many others[6][12]. BiČech closure spaces were introduced by K.Chandrasekhara Rao, R. Gowri and V. Swaminathan [4]. N. Levine [13] introduced g-closed sets. D. Andrijevic [1] initiated the study of β -open sets and β -closed sets. In this paper, we analyze the concept of BiČech sg β –continuous functions and BiČech sg β –Irresolute functions, Totally BiČech sg β –continuous functions in biclosure spaces and discuss some of their basic properties.

II. PRELIMINARIES

Definition 2.1: Two maps k_1 and k_2 from power set X to itself are called BiČech closure operator on X and the pair (X, k_1 , k_2) is called a BiČech closure spaces if the following axioms are satisfied

 $k_{1} (φ) = φ & k_{2}(φ) = φ$ $A ⊆ k_{1}(A) & A ⊆ k_{2} (A) \text{ for every } A ⊆ X$ $k_{1}(A ∪ B) = k_{1}(A) ∪ k_{1}(B) \text{ and } k_{2}(A ∪ B) = k_{2}(A) ∪ k_{2}(B) \text{ for all } A, B ⊆ X.$ **Definition 2.2** [5] A subset A in a BiČech closure space (X, k₁, k₂) is said to be k_i-regular open if A = int_{k_i} (k_i(A)), i = 1, 2 k_i -regular closed if A = k_i (int_{k_i} (A)), i = 1, 2 k_i-semi open if A ⊆ k_i (int_{k_i} (A)) ⊆ A, i = 1, 2 k_i-semi closed if int_{k_i} (k_i(A)) ⊆ A, i = 1, 2 k_i-pre open if A ⊆ int_{k_i} (k_i(A)) ⊆ A, i = 1, 2 k_i -α open if A ⊆ int_{k_i} (k_i (int_{k_i} (A))), i = 1, 2 k_i -α open if A ⊆ int_{k_i} (k_i (int_{k_i} (A))) ⊆ A, i = 1, 2 k_i -β open if A ⊆ k_i (int_{k_i} (k_i (A))) ⊆ A, i = 1, 2 k_i -β closed if (int_{k_i} (k_i (int_{k_i} (k_i(A)))) ⊆ A, i = 1, 2 k_i -β closed if (int_{k_i} (k_i (intA)))) ⊆ A, i = 1, 2. **Definition 2.3:** A subset A of a BiČech closure space (X, k₁, k₂) is called bicket

Definition 2.3: A subset A of a BiČech closure space (X, k_1,k_2) is called biclosed if $k_1A = A = k_2A$ and called biopen if its complement is biclosed.

Definition 2.4: A subset A of a BiČech closure space (X, k_1, k_2) is said to be (k_1, k_2) -g biclosed if $k_2(A) \subseteq G$ whenever $A \subseteq G$ and G is k_1 open set in X.

Definition 2.5: A subset A of a BiČech closure space (X, k_1, k_2) is said to be $(k_1, k_2)-\pi g\alpha$ biclosed if $k_{2\alpha}(A) \subseteq G$ whenever $A \subseteq G$ and G is $k_1 \pi$ -open set in X.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

Definition 2.6: Let (X, k_1, k_2) be a BiČech closure space. A subset $A \subseteq X$ is said to be (k_1, k_2) -w -biclosed set if $k_2(A) \subseteq G$ whenever $A \subseteq G$ and G is k_1 semi-open set in X.

Definition 2.7: Let (X, k_1, k_2) be a BiČech closure space. A subset $A \subseteq X$ is said to be (k_1, k_2) -J- Cech-biclosed set if $k_{\alpha}(A) \subseteq G$ whenever $A \subseteq G$ and G is k_1 semi-open set in X, where $k_{\alpha}(A)$ is the smallest α -closed set containing A.

Definition 2.8: Let (X, k_1, k_2) be a BiCech closure space. A subset $A \subseteq X$ is called (k_1, k_2) -sg β closed set if $k_{2\beta}(A) \subseteq G$ whenever $A \subseteq G$ and G is semi-open subset of (X, k_1) where $k_{2\beta}(A)$ is the smallest β -closed set containing A.

III. BICECH $sg\beta$ – CONTINUOUS FUNCTIONS

Definition 3.1: Let (X, k_1, k_2) and (Y, v_1, v_2) be a BiCech biclosure space. A map $f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is called BiCech sg β -continuous if every $f^{-1}(v)$ is BiCech sg β - open set in (X, k_1, k_2) for every biopen set V in (Y, v_1, v_2) .

Definition 3.2: A function $f:(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is called

(a) continuous if $f^{-1}(V)$ is biclosed in X for each biclosed set V of Y.

(b) g-continuous if $f^{-1}(V)$ is g-biclosed in X for each biclosed set V of Y.

(c) w-continuous if $f^{1}(V)$ is w-biclosed in X for each biclosed set V of Y.

(d) J-continuous if $f^{1}(V)$ is J-biclosed in X for each biclosed set V of Y.

(e) $\pi g\alpha$ -continuous if $f^1(V)$ is $\pi g\alpha$ -biclosed in X for each biclosed set V of Y.

Proposition 3.3:

(a) Every BiČech continuous is BiČech $sg\beta$ – continuous.

(b) Every BiČech g – continuous is BiČech $sg\beta$ – continuous.

(c) Every BiČech w – continuous is BiČech $sg\beta$ – continuous.

(d) Every BiČech J -continuous is BiČech $sg\beta$ – continuous.

(e) Every BiČech $\pi g \alpha$ -continuous is BiČech $sg\beta$ – continuous.

Proof: (a) Let f be a BiČech continuous. Let V be a BiČech open set in (Y, v_1, v_2) . Since f is BiČech continuous, $f^{-1}(V)$ is BiČech open set of (X, k_1, k_2) . Every BiČech open set is BiČech sg β – open set.

This implies that $f^{-1}(V)$ is BiČech sg β – open set of (X, k_1, k_2), for every BiČech open set V in (Y, v_1, v_2). (i.e.,) f is BiČech

 $sg\beta$ – continuous. Therefore every BiČech continuous is BiČech $sg\beta$ – continuous.

Note: The proof is obvious for others.

Remark 3.4: Converse of the above theorem need not be true which can be seen from the following example.

Example 3.5: (a) Let $X = \{a, b, c\}, Y = \{1, 2, 3\}.$

Define a closure operator k_1, k_2 on X by $k_1\{\phi\} = \{\phi\}, k_1\{a\} = k_1\{a,b\} = \{a,b\}, k_1\{c\} = k_1\{b,c\} = \{b,c\}, k_1\{c\} = \{b,c\}, k_1\{c\}, k_1\{c\} = \{b,c\}, k_1\{c\}, k_1$

 $k_1\{b\} = \{b\}, k_1\{a,c\} = k_1\{X\} = X, k_2\{\phi\} = \{\phi\}, k_2\{a\} = k_2\{a,c\} = \{a,c\}, k_2\{b\} = k_2\{b,c\} = \{b,c\}, k_2\{c\} = \{c\}, k_2\{a,b\} = k_2\{X\} = X.$ BiČech closed set of $X = \{X, \phi, \{b,c\}\}.$

 (k_1,k_2) sg β - closed set of X = { X, ϕ , {a}, {b}, {c}, {a,c}, {b,c}}.

 $\begin{array}{l} \text{Define a closure operator } v_1, v_2 \text{ on } Y \text{ by } v_1\{\phi\} = \{\phi\}, v_1\{1\} = \{1\}, v_1\{3\} = \{3\}, v_1\{1,3\} = \{1,3\}, v_1\{2\} = v_1\{1,2\} = v_1\{2,3\} = v_1\{Y\} = Y, v_2\{\phi\} = \{\phi\}, v_2\{3\} = \{3\}, v_2\{1,2\} = \{1,2\}, v_2\{1\} = v_2\{2\} = v_2\{1,3\} = v_2\{2,3\} = v_2\{Y\} = Y. \end{array}$

Biclosed set of $Y = \{ Y, \phi, \{3\} \}.$

Let f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be defined by f(a) = 2, f(b) = 3, f(c) = 1. Then f is $(k_1, k_2) \operatorname{sg}\beta$ – continuous but not continuous. Since for the biclosed set {3} in Y, the inverse image $f^{-1}{3} = {b}$ is not BiČech closed set in X.

Example 3.6: (b)Let X = {a, b, c}, Y = {p, q, r}. Define a closure operator k_1, k_2 on X by $k_1\{\varphi\} = \{\varphi\}$,

 $k_1\{a\} = k_1\{a,c\} = \{a,c\}, k_1\{b\} = k_1\{b,c\} = \{b,c\}, k_1\{c\} = \{c\}, k_1\{a,b\} = k_1\{X\} = X, k_2\{\phi\} = \{\phi\}, k_1\{a,b\} = k_1\{x\} = X, k_2\{\phi\} = \{\phi\}, k_1\{a,b\} = k_1\{a,c\} = \{a,c\}, k_1\{b,c\} = \{b,c\}, k_1\{c\} = \{c\}, k_1\{a,b\} = k_1\{X\} = X, k_2\{\phi\} = \{\phi\}, k_1\{a,b\} = k_1\{a,c\} = \{b,c\}, k_1\{a,b\} = \{b,c\}, k_1\{a,b\} = k_1\{a,c\} = k_1\{a,c\}, k_1\{b,c\} = \{b,c\}, k_1\{c\} = \{c\}, k_1\{a,b\} = k_1\{X\} = X, k_2\{\phi\} = \{\phi\}, k_1\{a,b\} = k_1\{a,c\}, k_1\{b,c\} = \{b,c\}, k_1\{a,b\} = k_1\{a,b\} = k_1\{a,b\}, k_1\{a$

 $k_{2}{b} = k_{2}{c} = k_{2}{b,c} = {b,c}, k_{2}{a} = {a}, k_{2}{a,b} = k_{2}{a,c} = k_{2}{X} = X.$

g- biclosed set of $X = \{ X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\} \}.$

 (k_1,k_2) sg β - closed set of X = { X, ϕ , {a}, {b}, {c}, {a,b}, {a,c}, {b,c}}.

Define a closure operator v_1, v_2 on Y by $v_1\{\phi\} = \{\phi\}, v_1\{p\} = \{p\}, v_1\{q\} = \{q\}, v_1\{p,q\} = \{p,q\}, v_1\{q\} = \{p,q\}, v_1\{q\}, v_1\{q\} = \{p,q\}, v_1\{q\}, v_1$

 $v_1{r}=v_1{p,r}=v_1{q,r}=v_1{Y}=Y, v_2{\phi}={\phi}, v_2{p}=v_2{q}=v_2{p,q}={p,q}, v_2{r}=v_2{p,r}=v_2{q, r}=v_2{q, r}=v_2{Y}=Y$. Biclosed set of $Y = \{Y, \phi, \{p,q\}\}$. Let f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be defined by f(a) = q, f(b) = p, f(c) = r. Then f is $(k_1, k_2) \text{ sg}\beta$ – continuous but not g-continuous. Since for the biclosed set $\{p,q\}$ in Y, the inverse image $f^{-1}{p,q} = \{a,b\}$ is not g-biclosed set in X.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

Example 3.7: (c)Let X = {a, b, c}, Y = {1, 2, 3}.Define a closure operator k_1 , k_2 on X by $k_1\{\phi\} = \{\phi\}$, $k_1\{c\} = k_1\{a,c\} = \{a,c\}$, $k_1\{a\} = \{a\}$, $k_1\{b\} = k_1\{b,c\} = k_1\{a,b\} = k_1\{X\} = X$, $k_2\{\phi\} = \{\phi\}$, $k_2\{a\} = \{a\}$, $k_2\{b\} = k_2\{a,b\} = \{a,b\}$, $k_2\{c\} = k_2\{a,c\} = \{a,c\}$, $k_2\{b,c\} = k_2\{X\} = X$.

w-biclosed set of $X = \{ X, \phi, \{a\}, \{a, b\}, \{a, c\} \}.$

 (k_1,k_2) sg β - closed set of X = { X, ϕ , {a}, {b}, {c}, {a,c}, {a,b}}.

Define a closure operator v_1, v_2 on Y by $v_1\{\phi\} = \{\phi\}, v_1\{1\} = \{1\}, v_1\{2\} = v_1\{1,2\} = \{1,2\}, v_1\{3\} = v_1\{1,3\} = \{1,3\}, v_1\{1\} = \{1,3\}, v_1\{1\}, v_1\{1\} = \{1,3\}, v_1\{1\}, v_1\{1$

 $v_1\{2,3\}=v_1\{Y\}=Y, v_2\{\phi\}=\{\phi\}, v_2\{1\}=\{1\}, v_2\{2\}=v_2\{3\}=v_2\{2,3\}=\{2,3\},$

 $v_2\{1,3\} = v_2\{1,2\} = v_2\{Y\} = Y.$

Biclosed set of $Y = \{ Y, \varphi, \{1\} \}$. Let f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be defined by f(a) = 3, f(b) = 1, f(c) = 2. Then f is (k_1, k_2) sg β – continuous but not w-continuous. Since for the biclosed set $\{1\}$ in Y, the inverse image $f^{-1}\{1\} = \{b\}$ is not w-biclosed set in X.

Example 3.8: (d) Let $X = \{1,2,3\}$, $Y = \{a,b,c\}$. Define a closure operator k_1,k_2 on X by $k_1\{\phi\} = \{\phi\}, k_1\{2\} = \{2\}, k_1\{3\} = k_1\{1,3\} = \{1,3\}, k_1\{1\} = k_1\{1,2\} = k_1\{2,3\} = k_1\{X\} = X, k_2\{\phi\} = \{\phi\}, k_2\{2\} = k_2\{2,3\} = \{2,3\}, k_2\{3\} = \{3\}, k_1\{1\} = k_1\{1,2\} = k_1$

 $k_2\{1\} = k_2\{1,3\} = \{1,3\}, \ k_2\{1,2\} = k_2\{X\} = X.$

BiČech J- closed set of $X = \{ X, \phi, \{1\}, \{1,2\}, \{1,3\}, \{2,3\} \}.$

 (k_1,k_2) sg β - closed set of X = { X, ϕ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}.

Define a closure operator v_1, v_2 on Y by $v_1\{\phi\} = \{\phi\}, v_1\{b\} = v_1\{c\} = v_1\{b,c\} = \{b,c\},$

 $v_1\{a\} = \{a\}, v_1\{a,b\} = v_1\{a,c\} = v_1\{Y\} = Y, \ v_2\{\phi\} = \{\phi\}, v_2\{a\} = \{a\}, v_2\{b\} = v_2\{a,b\} = \{a,b\}, v_2\{a\} = \{a\}, v_2\{b\} = v_2\{a,b\} = \{a,b\}, v_2\{a\} = \{a\}, v_2\{b\} = v_2\{a,b\} = \{a,b\}, v_2\{a\} = \{a\}, v_2\{b\} = v_2\{a,b\} = v_2\{a,b$

$$v_2{c} = v_2{a,c} = {a,c}, v_2{b,c} = v_2{Y} = Y$$

Biclosed set of $Y = \{ Y, \phi, \{a\}\}$.Let f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be defined by f(1) = c, f(2) = a, f(3) = b.Then f is (k_1, k_2) sg β – continuous but not J-continuous. Since for the biclosed set $\{a\}$ in Y, the inverse image $f^{-1}\{a\} = \{2\}$ is not in J -biclosed set in X.

Example 3.9: (e) Let $X = \{a, b, c\}$, $Y = \{p,q,r\}$. Define a closure operator k_1, k_2 on X by $k_1\{\phi\} = \{\phi\}$, $k_1\{a\} = \{a\}$,

 $k_1\{b\} = k_1\{a,b\} = \{a,b\}, k_1\{c\} = k_1\{a,c\} = \{a,c\}, k_1\{b,c\} = k_1\{X\} = X, k_2\{\phi\} = \{\phi\},$

 $k_2\{b\} = k_2\{c\} = k_2\{b,c\} = \{b,c\}, k_2\{a\} = \{a\}, k_2\{a,c\} = k_2\{a,b\} = k_2\{X\} = X.$

BiČech $\pi g\alpha$ – closed set of X = { X, ϕ , {a}, {a, b}, {a, c}, {b, c}}.

 (k_1,k_2) sg β - closed set of X = { X, ϕ , {a}, {b}, {c}, {a,c}, {b,c}, {a,b}}.

Define a closure operator v_1, v_2 on Y by $v_1\{\phi\} = \{\phi\}, v_1\{p\} = \{p\}, v_1\{q\} = v_1\{r\} = v_1\{q,r\} = \{q,r\}, v_1\{p,q\} = v_1\{q,r\} = v_1\{Y\} = Y, v_2\{\phi\} = \{\phi\}, v_2\{p\} = \{p\}, v_2\{q\} = v_2\{p,q\} = \{p,q\}, v_2\{r\} = v_2\{p,r\} = \{p,r\}, v_2\{q,r\} = v_2\{Y\} = Y.$

Biclosed set of $Y = \{ Y, \phi, \{p\} \}$.Let f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be defined by f(a) = r, f(b) = p, f(c) = q. Then f is (k_1, k_2) sg β – continuous but not $\pi g\alpha$ -continuous. Since for the biclosed set $\{p\}$ in Y, the inverse image $f^{-1}\{p\} = \{b\}$ is not in $\pi g\alpha$ -biclosed set in X.

Proposition 3.10: Let (X, k_1, k_2) and (Y, v_1, v_2) be biclosure spaces and let $f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be a map. Then f is BiČech $sg\beta$ – continuous if and only if the inverse image of every BiČech closed subset of (Y, v_1, v_2) is BiČech – $sg\beta$ closed in (X, k_1, k_2) . **Proof:** Let F be BiČech closed subset in (Y, v_1, v_2) . Then Y – F is BiČech open in (Y, v_1, v_2) . Since f is BiČech $sg\beta$ – continuous, $f^{-1}(Y - F)$ is BiČech $sg\beta$ – open. But $f^{-1}(Y - F) = X - f^{-1}(F)$ thus $f^{-1}(F)$ is BiČech $sg\beta$ – closed in (X, k_1, k_2) . Conversely let G be an BiČech open subset in (Y, v_1, v_2) . Then Y – G is BiČech closed in (Y, v_1, v_2) . Since the inverse image of each BiČech closed subset in (Y, v_1, v_2) is BiČech $sg\beta$ – closed in (X, k_1, k_2) . But $f^{-1}(Y - G)$ is BiČech $sg\beta$ – closed in (X, k_1, k_2) . But $f^{-1}(Y - G) = X - f^{-1}(G)$. Thus $f^{-1}(G)$ is BiČech $sg\beta$ – open. Therefore f is BiČech $sg\beta$ – continuous.

Remark 3.11: The composition of two BiČech $sg\beta$ - continuous need not be BiČech $sg\beta$ - continuous.

Definition 3.12: A Biclosure space (X, k_1, k_2) is said to be a T_d – space if every BiČech sg β – open set in (X, k_1, k_2) is BiČech open. **Proposition 3.13:** Let (X, k_1, k_2) and (Z, w_1, w_2) be biclosure spaces and (Y, v_1, v_2) be a T_d – space. If f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ and g: $(Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ are BiČech sg β – continuous, then g o f is BiČech sg β – continuous.

Proof: Let H be BiČech open in (Z, w_1, w_2). Since g is BiČech sg β - continuous, $g^{-1}(H)$ is BiČech sg β - open in (Y, v_1, v_2). But (Y, v_1, v_2) is a T_d – space, hence $g^{-1}(H)$ is BiČech open in (Y, v_1, v_2). Thus $f^{-1}(g^{-1}(H)) = (g \circ f)^{-1}(H)$ is BiČech sg β - open in (X, k_1, k_2). Therefore, g o f is BiČech sg β - continuous.

Proposition 3.14: Let (X, k_1, k_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces. If f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is BiČech

 $sg\beta$ – continuous and g: $(Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ is continuous then g o f is BiČech $sg\beta$ – continuous.

Proof: Let H be an BiČech open subset of (Z, w_1, w_2). Since g is continuous, $g^{-1}(H)$ is BiČech open in (Y, v_1, v_2). Since f is BiČech $sg\beta$ – continuous, $f^{-1}(g^{-1}(H))$ is BiČech $sg\beta$ – open in (X, k_1, k_2). But $f^{-1}(g^{-1}(H)) = (g \circ f)^{-1}(H)$. Therefore, g o f is BiČech $sg\beta$ – continuous.

IV. BIČECH sgβ – IRRESOLUTE FUNCTION

Definition 4.1:Let (X, k_1, k_2) and (Y, v_1, v_2) be biclosure space and a map f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is called BiČech sg β – irresolute, if f⁻¹(G) is BiČech sg β – open set (closed set) in (X, k_1, k_2) for every BiČech sg β – open set (closed set) G in (Y, v_1, v_2) .

Proposition 4.2: Every BiČech $sg\beta$ – irresolute map is BiČech $sg\beta$ – continuous.

Proof: Assume that f is BiČech $sg\beta$ – irresolute. Let V be a BiČech closed set in Y. Every BiČech closed set is BiČech $sg\beta$ – closed. That implies V be a BiČech $sg\beta$ – closed set in Y. Since f is BiČech $sg\beta$ – irresolute, $f^{-1}(V)$ is BiČech $sg\beta$ – closed set in X. Thus $f^{-1}(V)$ is BiČech $sg\beta$ – closed set in X, \forall BiČech closed set V in Y. That implies f is BiČech $sg\beta$ – continuous. **Remark 4.3:** The converse is not true as can be seen from the following example:

Example 4.4: Let $X = \{a,b,c\}$ and $Y = \{1,2,3\}$. Define a closure operator k_1 , k_2 on X by $k_1\{\phi\} = \{\phi\}$, $k_1\{a\} = k_1\{a,c\} = \{a,c\}$, $k_1\{b\} = k_1\{b,c\} = \{b,c\}$, $k_1\{c\} = \{c\}$, $k_1\{a,b\} = k_1\{X\} = X$, $k_2\{\phi\} = \{\phi\}$, $k_2\{b\} = \{b\}$, $k_2\{a\} = k_2\{a,b\} = \{a,b\}$,

 $k_2\{c\} = k_2\{b,c\} = \{b,c\}, \ k_2\{a,c\} = k_2\{X\} = X.$

Biclosed set of $X = \{ X, \phi, \{b,c\} \}$.

BiČech $sg\beta$ – closed set of X = { X, ϕ , {a}, {b}, {c}, {a, b}, {b, c}}.

 $\begin{array}{l} \text{Define a closure operator } v_1, v_2 \text{ on } Y \text{ by } v_1\{\phi\} = \{\phi\}, \ v_1\{2\} = v_1\{1,2\} = \{1,2\}, \ v_1\{3\} = v_1\{1,3\} = \{1,3\}, \ v_1\{1\} = \{1\}, \ v_1\{2,3\} = v_1\{Y\} = Y, \ v_2\{\phi\} = \{\phi\}, \ v_2\{1\} = \{1\}, \ v_2\{2\} = v_2\{3\} = v_2\{2,3\} = \{2,3\}, \end{array}$

 $v_2\{1,2\} = v_2\{1,3\} = v_2\{Y\} = Y.$

Biclosed set of $Y = \{ Y, \phi, \{1\} \}.$

BiČech sg β – closed set of Y = { Y, ϕ , {1}, {2}, {3}, {1, 2}, {1,3}, {2,3}}.

Define a function f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ such that f(a) = 3, f(b) = 2, f(c) = 1. Here f is BiČech sg β – continuous.

 $f^{-1}{1,3} = {a,c}$ is not BiČech $sg\beta$ – closed in (X, k_1,k_2). Therefore f is not BiČech $sg\beta$ – irresolute.

Proposition 4.5: Let (X, k_1, k_2) and (Y, v_1, v_2) be biclosure spaces and f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be a map. Then f is BiČech

 $sg\beta$ – irresolute if and only if $f^{-1}(B)$ is BiČech $sg\beta$ – closed in (X, k_1, k_2) whenever B is BiČech $sg\beta$ – closed in (Y, v_1, v_2) .

Proof: Suppose B be a BiČech $sg\beta$ – closed subset of (Y, v_1, v_2) . Then Y - B is BiČech $sg\beta$ – open in (Y, v_1, v_2) .

Since f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is BiČech sg β – irresolute, f⁻¹(Y – B) is BiČech sg β – open in (X, k_1, k_2) .

But, $f^{-1}(Y - B) = X - f^{-1}(B)$, so that $f^{-1}(B)$ is BiČech $sg\beta$ – closed in (X, k_1, k_2). Conversely, Let A be a BiČech $sg\beta$ – open subset in (Y, v_1, v_2). Then Y – A is BiČech $sg\beta$ – closed in (Y, v_1, v_2). By the assumption, $f^{-1}(Y - A)$ is BiČech $sg\beta$ – closed in (X, k_1, k_2). But $f^{-1}(Y - A) = X - f^{-1}(A)$. Thus $f^{-1}(A)$ is BiČech $sg\beta$ – open in (X, k_1, k_2). Therefore, f is BiČech $sg\beta$ – irresolute. **Proposition 4.6:** Let (X, k_1, k_2), (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces. If f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2) is a BiČech $sg\beta$ – irresolute map and g: (Y, v_1, v_2) \rightarrow (Z, w_1, w_2) is a BiČech $sg\beta$ – continuous map, then the composition g o f: (X, k_1, k_2) \rightarrow (Z, w_1, w_2) is BiČech $sg\beta$ – continuous.

Proof: Let G be an open subset of (Z, w_1, w_2). Then $g^{-1}(G)$ is a BiČech sg β -open in (Y, v_1, v_2) as g is BiČech sg β – continuous. Hence, $f^{-1}(g^{-1}(G))$ is BiČech sg β – open in (X, k_1, k_2) because f is BiČech sg β – irresolute. Thus gof is BiČech sg β – continuous.

Proposition 4.7: Let (X, k_1, k_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces. If $f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ and

g: $(Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ are BiČech sg β – irresolute, then g o f: $(X, k_1, k_2) \rightarrow (Z, w_1, w_2)$ is BiČech sg β – irresolute.

Proof: Let F be BiČech sg β – open set in (Z, w₁,w₂). As g is BiČech sg β – irresolute, $g^{-1}(F)$ is BiČech sg β – open in (Y, v₁,v₂). Since, f is BiČech sg β – irresolute. $f^{-1}(g^{-1}(F))$ is BiČech sg β – open in (X, k₁,k₂) implies (g o f) $^{-1}F = (f^{-1}g^{-1}(F))$ is BiČech sg β – open in (X, k₁,k₂). Hence g o f is BiČech sg β – irresolute.

Proposition 4.8: Let (X, k_1, k_2) and (Z, w_1, w_2) be biclosure spaces and (Y, v_1, v_2) be a T_d – space. If f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be a BiČech sg β –continuous map and g: $(Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ is a BiČech sg β – irresolute, then the composition

g o f: $(X, k_1, k_2) \rightarrow (Z, w_1, w_2)$ is BiČech sg β -irresolute.

Proof: Let V be BiČech sg β – open in Z. Since g is BiČech sg β – irresolute, $g^{-1}(V)$ is BiČech sg β – open in Y. As Y is a T_d – space, $g^{-1}(V)$ is BiČech open in Y. Since f is BiČech sg β -continuous , $f^{-1}(g^{-1}(V))$ is BiČech sg β – open in X. Thus (g o f) $^{-1}(V)$ is BiČech sg β – open in X. Hence g o f is BiČech sg β – irresolute.

V. TOTALLY BIČECH sg β – CONTINUOUS FUNCTION

Definition 5.1: Let (X, k_1, k_2) and (Y, v_1, v_2) be a BiCech closure space. A function $f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is called Totally BiCech continuous if the inverse image of every biopen subset of (Y, v_1, v_2) is a BiCech clopen subset in (X, k_1, k_2) .

Definition 5.2: Let (X, k_1, k_2) and (Y, v_1, v_2) be a BiCech closure space. A function f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is called Totally BiCech sg β -continuous if the inverse image of every biopen subset of (Y, v_1, v_2) is a BiCech sg β - clopen subset in (X, k_1, k_2) .

Theorem 5.3: A function f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is totally BiCech sg β -continuous if and only if the inverse image of every biclosed subset of (Y, v_1, v_2) is a BiCech sg β - clopen subset in (X, k_1, k_2) .

Proof: Assume that f is totally BiCech sg β -continuous. Let A be any biclosed subset in Y. Then A^c is a biopen subset in Y. Since f is totally BiCech sg β -continuous. Thus f¹(A^c) is BiCech sg β - clopen subset in (X, k₁,k₂). But f¹(A^c) = X - f¹(A) and so f¹(A) is both BiCech sg β - closed subset and BiCech sg β -open subset in X. Conversely, let G be a biopen subset in Y.Then G^c is biclosed subset in X. By assumption f¹(G^c) is BiCech sg β - clopen subset in (X, k₁,k₂). But f¹(G^c) = X - f¹(G) and so f¹(G) is both BiCech sg β - clopen subset in (X, k₁,k₂). But f¹(G^c) = X - f¹(G) and so f¹(G) is both BiCech sg β - clopen subset in (X, k₁,k₂). But f¹(G^c) = X - f¹(G) and so f¹(G) is both BiCech sg β - clopen subset in (X, k₁,k₂). Therefore f is totally BiCech sg β -continuous.

Theorem 5.4: Every totally BiCech sg β -continuous f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2) is BiČech sg β – continuous function. **Proof:** Let A be any biopen subset in Y. Since f is totally BiCech sg β -continuous. Thus f¹(A) is BiCech sg β - clopen subset in (X, k_1, k_2).(i.e) f¹(A) is both BiCech sg β - closed subset and BiCech sg β -open subset in X. Thus f¹(A) is BiCech sg β -open subset in (X, k_1, k_2). Therefore f is a sg β -continuous.

Remark 5.5: The converse is not true as can be seen from the following example: **Example 5.6:** Let $X = \{a,b,c\}$, $Y = \{1,2,3\}$. Define a closure operator k_1,k_2 on X by $k_1\{\phi\} = \{\phi\}$, $k_1\{a\} = k_1\{a,c\} = \{a,c\}, k_1\{b\} = k_1\{b,c\} = \{b,c\}, k_1\{c\} = \{c\}, k_1\{a,c\} = k_1\{X\} = X, k_2\{\phi\} = \{\phi\}, k_2\{b\} = \{b\}, k_2\{c\} = \{b,c\}, k_2\{a\} = k_2\{a,b\} = \{a,b\}, k_2\{a,c\} = k_2\{X\} = X.$ Biclosed set of $X = \{X, \phi, \{b, c\}\}$. $(k_1,k_2) \text{ sg}\beta$ - closed set of $X = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$. Define a closure operator v_1,v_2 on Y by $v_1\{\phi\} = \{\phi\}, v_1\{1\} = \{1\}, v_1\{2\} = v_1\{1,2\} = \{1,2\}, v_1\{3\} = v_1\{1,3\} = \{1,3\}, v_1\{2,3\} = v_1\{Y\} = Y, v_2\{\phi\} = \{\phi\}, v_2\{1\} = \{1\}, v_2\{2\} = v_2\{3\} = v_2\{2,3\} = \{2,3\}, v_2\{1,3\} = v_2\{Y\} = Y.$

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

Biclosed set of Y = { $Y, \, \phi, \, \{1\}\}$. Biopen set of Y = { $Y, \, \phi, \, \{2,3\}\}.$

Let f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be defined by f(a) = 2, f(b) = 1, f(c) = 3. Then f is $(k_1, k_2) \operatorname{sg\beta}$ – continuous but not totally BiCech sg\beta-continuous. Since for the biopen set {2,3} in Y, the inverse image $f^{-1}{2,3} = \{a,c\}$ is not totally BiCech sg\beta-clopen set in X. **Theorem 5.7:** Let f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ and g: $(Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ be function. Then g o f: $(X, k_1, k_2) \rightarrow (Z, w_1, w_2)$

(i) If f is BiCech sg β -irresolute and g is totally BiCech sg β -continuous then gof is totally BiCech sg β -continuous.

(ii) If f is totally BiCech sg β -continuous and g is BiCech continuous then gof is totally BiCech sg β -continuous.

Proof: (i) Let U be a BiCech open set in Z. Since g is totally BiCech sg β -continuous, g⁻¹(U) is BiCech sg β -clopen in Y. Since f is BiCech sg β -irresolute, f¹(g⁻¹(U)) is BiCech sg β -open and BiCech sg β -closed in X. Since gof⁻¹(U) = f⁻¹(g⁻¹(U)), gof is totally BiCech sg β -continuous.

(ii) Let U be a BiCech open set in Z. Since g is BiCech continuous, $g^{-1}(U)$ is BiCech open in Y. Also since f is totally BiCech sg β -continuous, $f^{-1}(g^{-1}(U))$ is BiCech sg β -clopen in X. Hence gof is totally BiCech sg β -continuous.

VI. SLIGHTLY BIČECH sgβ – CONTINUOUS FUNCTION

Definition 6.1: Let (X, k_1, k_2) and (Y, v_1, v_2) be a BiCech closure space. A function $f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is called Slightly BiCech -continuous if the inverse image of every clopen subset of (Y, v_1, v_2) is a BiCech-open subset in (X, k_1, k_2) .

Definition 6.2: Let (X, k_1, k_2) and (Y, v_1, v_2) be a BiCech closure space. A function $f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is called Slightly BiCech sg β -continuous if the inverse image of every clopen subset of (Y, v_1, v_2) is a BiCech sg β -open subset in (X, k_1, k_2) .

Theorem 6.3: Every BiCech sg β -continuous f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ is Slightly BiČech sg β -continuous.

Proof: Let f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be a BiCech sg β -continuous function. Let U be a clopen set in Y.Then f⁻¹(U) is BiCech sg β -open in X and BiCech sg β -closed in X. Hence f is Slightly BiČech sg β - continuous.

Theorem 6.4: Every Slightly BiCech continuous is Slightly BiČech sgβ – continuous.

Proof: Let $f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be Slightly BiCech continuous function. Let U be a clopen set in Y.Then $f^1(U)$ BiCech open in X.Since every open set is sg β -open, $f^1(U)$ BiCech sg β -open. Hence f is Slightly BiČech sg β - continuous.

Remark 6.5: The converse is not true as can be seen from the following example:

Example 6.6: Let $X = \{a,b,c\}$, $Y = \{1,2,3\}$. Define a closure operator k_1,k_2 on X by $k_1\{\phi\} = \{\phi\}$,

 $k_1\{a\} = k_1\{a,c\} = \{a,c\}, k_1\{b\} = k_1\{b,c\} = \{b,c\}, k_1\{c\} = \{c\}, k_1\{a,c\} = k_1\{X\} = X, k_2\{\phi\} = \{\phi\},$

 $k_2\{\phi\} = \{\phi\}, k_2\{b\} = \{b\}, k_2\{c\} = k_2\{b,c\} = \{b,c\}, k_2\{a\} = k_2\{a,b\} = \{a,b\}, k_2\{a,c\} = k_2\{X\} = X.$

Biclosed set of X={X, ϕ , {b,c}}. Biopen set of X={X, ϕ , {a}}.

 (k_1,k_2) sg β - closed set of X = { X, ϕ , {a}, {b}, {c}, {a,b}, {b,c} }.

Define a closure operator v_1, v_2 on Y by $v_1\{\phi\} = \{\phi\}, v_1\{1\} = v_1\{1,3\} = \{1,3\}, v_1\{2\} = \{2\},$

 $v_1{3} = v_1{2,3} = v_1{1,2} = v_1{Y} = Y, v_2{\phi} = {\phi}, v_2{2} = {2}, v_2{3} = {3}, v_2{1} = v_2{1,3} = {1,3},$

 $v_2{2,3} = {2,3}, v_2{1,2} = v_2{Y} = Y.$

Biclopen set of $Y = \{ Y, \phi, \{2\}, \{1,3\} \}.$

Let f: $(X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ be defined by f(a) = 3, f(b) = 1, f(c) = 2. Then f is slightly BiCech sg β – continuous but not slightly BiCech continuous. Since for the clopen set {1,3} in Y, the inverse image $f^{-1}{1,3} = \{a,b\}$ is not slightly BiCech open set in X.

Theorem 6.7: Let $f: (X, k_1, k_2) \rightarrow (Y, v_1, v_2)$ and $g: (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ be function.

(i) If f is BiCech sg β -irresolute and g is slightly BiCech sg β -continuous then gof is slightly BiCech sg β -continuous.

(ii) If f is BiCech sg β -irresolute and g is BiCech sg β -continuous then gof is slightly BiCech sg β -continuous.

(iii) If f is BiCech sg β -continuous and g is slightly BiCech continuous then gof is slightly BiCech sg β -continuous.

Proof: (i) Let U be a BiCech clopen set in Z. Since g is slightly BiCech sg β -continuous, $g^{-1}(U)$ is BiCech sg β -open in Y. Since f is BiCech sg β -irresolute, $f^{-1}(g^{-1}(U))$ is BiCech sg β -open in X. Since $gof^{-1}(U) = f^{-1}(g^{-1}(U))$, gof is slightly BiCech sg β -continuous.

(ii) Let U be a BiCech clopen set in Z. Since g is BiCech sg β - continuous, g⁻¹(U) is BiCech sg β -open in Y. Also since f is BiCech sg β -irresolute, f⁻¹(g⁻¹(U)) is BiCech sg β -open in X. Hence gof is slightly BiCech sg β -continuous.

(iii) Let U be a BiCech clopen set in Z. Since g is BiCech continuous, $g^{-1}(U)$ is BiCech open in Y. Also since f is BiCech sg β -continuous, $f^{-1}(g^{-1}(U))$ is BiCech sg β -copen in X. Hence gof is slightly BiCech sg β -continuous.

REFERENCES

[1] D. Andrijevic, "On β-open sets", Mat vesnik 48(1996), 59-64.

[2] I. Arockiarani and J. Martina Jency, "On J-čech closed sets in closure spaces", Kerala Mathematical Association.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

- [3] E.cech, "Topological Spaces", Inter science publications John wiley and son, New York (1996).
- [4] K. Chandrasekhara Rao and R. Gowri, "On biclosure spaces", Bulletine of pure and applied sciences, 25E (2006), 171-175.
- [5] K. Chandrasekhara Rao and R. Gowri, "Regular generalised closed sets in biclosure spaces", Jr. of institute of mathematics and computer science, (Math. Ser.), 19(3) (2006), 283-286.
- [6] K. Chandrasekhara Rao and R.Gowri "On closure Spaces", Varahamihir journal of Mathematical Science 5(2) (2005), 375-378.
- [7] Chawalit Boonpok, "Generalized Biclosed sets in Biclosure Spaces", Int. Journal of Math. Analysis, Vol. 4,2010, no. 2,89-97.
- [8] R. Devi and M.Parimala, "On αψ-closed sets in BiČech Closure Spaces", Int. Journal of Math. Analysis, Vol. 4, 2010, no. 33,1599-1606.
- [9] Francina Shalini A and Arockiarani SR I," New functions in Čech πgβ- closure spaces", International Journal of Recent Scientific Research, Vol. 7, Issue 1, pp. 8515-8517.
- [10] Francina Shalini A and M. Divya Bharathi," sgβ-closed sets in Biclosure spaces", International Journal of Applied Research, Vol. 3, Issue 7, 1188-1192.
- [11] Ganes M. Pandya and C.Janaki and I. Arockiarani, "πgα-Separation Axioms in BiČech Spaces", Int Mathematical Forum, Vol.6,2011, no. 21, 1045-1052.
 [12] C.Janaki and I. Arockiarani "A new class of open functions in Čech spaces", Actaciencia India, 36M, 4(2010), 649-653.
 [13] N.Levine," Generalized closed sets in topology", Rend, circ, Mat palemo, 19(1970), 89-96.
- [12] S. Pious Missierl & J.Arul Jesti," Slightly Sg* -continuous functions and totally Sg*continuous functions in Topological spaces", IOSR Journal of Mathematics, Volume 11, Issue 2 Ver. I (Mar - Apr. 2015), PP 27-30
- [13] D. Sasikala and I. Arockiarani, "čech w closed sets in closure spaces", International journal of Mathematical Archive 4(10), 013, 30 35.
- [14] J. Slapal, "Closure operations for digital topology", Theoret. Comput. Sci,305(1-3) (2003), 457-471.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)