



IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: VIII Month of publication: August 2017 DOI: http://doi.org/10.22214/ijraset.2017.8326

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com



# 3D In-Cylinder Combustion Simulation Comparison Between with Squish and without Squish Area

B Kurmi Naidu<sup>1</sup>, A Srinivasa Rao<sup>2</sup>, A Satish Kumar<sup>3</sup> <sup>1</sup>M. Tech student, <sup>2</sup>Assoc. Professor, <sup>3</sup>Asst. Professor, AITAM Tekkali, Andhra Pradesh, INDIA

Abstract: Fluid flow dynamics inside an engine combustion cylinder permits a better cylinder combustion, engine performance and efficiency. The In-Cylinder model of the software ANSYS Fluent is used in this paper to simulate 3D air motion with fuel combustion. The flow phantasm can create a 3D geometry and also the numerical analysis by using CFD results. By doing like this, we have a chance to compare different designs and this comparison helps to determine the best suited optimal designs. The engine used for this combustion simulation is a simple straight valve engine with two intake and two exhaust valves. The piston moment can be visualized through the animation and velocity magnitude curves are plotted for crank angle starting from 570 to 833. The engine is simulated for only working stroke/combustion stroke. The text file is written in working directory containing swirl, x-tumble, y-tumble and moment of inertia as a function of CA. This tool automatically creates animations for mesh on cut plane, temperature on ice cut plane and velocity magnitude on ice cut plane. These created counters and graphs can show the performance of the engine used. The graphs indicate that the piston with squish area can maintain high velocities and produce maximum temperatures and gives maximum energy.

Keywords: CFD, In-Cylinder analysis, combustion Simulation, Swirl, IC Engine Analysis

### I. INTRODUCTION

It is very difficult to getting better results in the internal combustion engines. Because it includes so much of losses and we need to calculate these results by experimentation. Very compact, light, powerful, and flexible engines are needed for the next generation, though it produces less pollution and using less fuel. Fluid dynamics of turbulent reacting flows with moving parts through the intake/exhaust manifolds, valves, cylinder and piston is the main challenge in design. Present all the engineers are looking for the best method for improving the working of the product using various approaches which will reduce cost of research and give the desired results. We may consider the time taken for of the intake air flow, fuel injection, liquid fuel vaporization, turbulent mixing of fuel and air and pollutant formation.

To overcome all these problems Computational Fluid Dynamics (CFD) has appeared as one of the best useful tool to understand the fluid dynamics of IC Engines for design purposes. From the last few decades, CFD is such a technique which has developed in research of different systems finding its applications in entire engineering discipline. In this present paper, I describe the use of CFD method for simulation and analysis of internal combustion engine by using IC Engine tool. Using CFD methods we can get required results with no cost of experimentation and within less time. I think ANSYS/FLUENT is the best software for such a simulation forgetting accurate results and due to better meshing capabilities for sophisticated problems.

The analysis prescribed by CFD helps to guide the geometry design of parts, such as ports, valves, and pistons; likewise engine parameters like valve timing and fuel injection system. The flow phenomena can be visualized on 3D geometry Using CFD results and also the numerical results can be calculated inside the engine. These results are used for comparing different engine designs and quantify the different trade-offs like soot vs NOx, swirl vs tumble and impact on turbulence production, combustion efficiency vs pollutant formation. These are all helps to determine optimal designs.

The CFD analyses performed can be classified into three types by based on the increasing order of their complexity out of which the first analysis is Port Flow Analysis. In which Quantification of flow rate, swirl and tumble, with static engine geometry at different locations during the engine cycle. The second analysis is Cold Flow Analysis. In this we can perform different actions like the Engine cycle with moving geometry, air flow, and no fuel injection or reactions. And the last analysis is In-Cylinder Combustion Simulation. In this analysis we can consider the Power and exhaust strokes with fuel injection, ignition, reactions, and pollutant prediction on moving geometry. Full Cycle Simulation: Simulation of the entire engine cycle with air flow, fuel injection, combustion, and reactions.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

#### II. COMBUSTION SIMULATION IN-CYLINDER ANALYSIS

To solve in-cylinder (IC) problems in ANSYS FLUENT, we have mainly two approaches. They are 1) hybrid approach and 2) layering approach. The layering approach is used for engines which having vertical valves like diesel engines and the hybrid approach is used for engines which are having canted valves mostly for spark ignited (SI) engines. There are mainly 3 stages for Internal Combustion engine simulation. The first stage is to decompose the geometry into different zones and sub nodes. The second stage is meshing. The decomposed geometry is used to apply mesh for different motion strategies to different regions in a single simulation. The third stage is to set up the engine case in ANSYS FLUENT with the help of a setup journal. Here we can perform a transient IC simulation. Importing the engine geometry is the starting for combustion simulation. The imported geometry is then divided into smaller volumes by using the decomposition tool. This decomposition performs every volume in the engine to be meshed separately. The main function of the Decomposition is to divide a volume into sub-volumes and then the sub-volumes are meshed properly. Every volume will be meshed into hex or tetra elements, depending upon the approach. Before the geometry is decomposed you should maintain the pistons at TDC (top dead center) and valves at closed position. When the piston is placed at TDC, less volume is remained.

#### A. Turbulence Due To Swirl

In this paper we can choose an engine which is having a squish area at the top of the piston to create swirl. Air in this area attempting to rotate around a cyclone due to that there creates a "swirl" the air attempting to move into a low pressure area is not able to because of strong centrifugal accelerations. The air is pumped into the combustion chamber during the intake cycle and it passes through the space between the valve and the valve seat. This jet creates the angular momentum, known as swirl and tumble, to the fresh charge. When the piston moves up towards the top during the compression stroke, most of the energy contained in the tumble of the jet is converted to turbulence due to that the available space in the vertical direction is reduced. The swirl will become stronger as the air is squished out to the side. If there is a narrow region between the piston and the cylinder head, the air may be squished from the sides of the cylinder into the combustion chamber, by converting the swirl energy into turbulence.

To enhance turbulent levels, one of the best methods is to create a swirling vortex in the cylinder during compression stroke. This will increase the turbulence rate in the compression stroke.

#### B. Effect of Swirl Ratio

The swirl ratio is defined as the angular velocity of a solid body rotating flow which has equal angular momentum to the actual flow divided by the crank shaft angular rotational speed. Large swirl ratios imply increasing amount of mass, and if the vertical velocities are not strong enough to "evacuate" that mass from a given level, then the circulation breaks down into multiple circulation centers. The measure of intensity of each circulation center is nothing but a swirl ratio. Hence, the larger the swirl ratio, the stronger the circulation center, the stronger the pressure fall at the center.

Mathematically, the effective angular speed of in cylinder air motion is divided with the engine speed can give the swirl and tumble ratio. Here the effect angular speed is the ratio of the angular momentum to the angular moment of inertia.

#### III. CFD METHODOLOGIES

The CAD model in native format can be imported to ANSYS/Fluent. After importing the CAD file the engine geometry is meshed into different volumes separate mesh is used for separate volumes in the engine. The engine model can be as shown below.

The comparison of model designs for the combustion chamber with squish area and the combustion chamber without squish area are as shown in below fig. The having this squish area increases the area of combustion chamber. By increasing the combustion area we can get the maximum result with high temperatures and due to this we can get high velocities for piston movements.



Fig -1 Basic Geometry with Squish



Fig -2 Geometry without Squish



## International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

The analysis can carried on both the designs with the same boundary conditions and the same specified conditions. The boundary conditions for the analyses can be shown in the table1.

| Туре | Zones                  | Values             |  |
|------|------------------------|--------------------|--|
| wall | Ice-cyl-chamber-bottom | Temperature(k) 567 |  |
| wall | Ice-cyl-chamber-top    | Temperature(k) 567 |  |
| wall | Ice-cyl-piston         | Temperature(k) 567 |  |
| wall | Ice-piston             | Temperature(k) 645 |  |
| wall | Ice-sector-top-faces   | Temperature(k) 602 |  |

| · · |     |      |     |        | -     |         |
|-----|-----|------|-----|--------|-------|---------|
| т   | abl | le-1 | Bou | Indary | Z Con | ditions |

#### A. Case Description

The engine design used in this paper for combustion simulation is four stroke single cylinder diesel engines with two inlets and two exhaust straight valves. It is an in-cylinder engine having piston and cylinder in in line. The model is prepared with solid works software. The engine modeled for this study is imported in ANSYS/Fluent (3D). To sets up necessary motions for valves and pistons along with solution parameters case set up is used. Along with solution parameter the journal file creates the required motions for valves and piston. Tetrahedral mesh is used in the upper combustion chamber and ports to facilitate the setup. We are using sector decomposition option to simplify the solution. Before using the IC engine solver settings and the boundary conditions the mesh must have the correct decomposition and name



| Table-2Engine System Inputs |                               |       |  |
|-----------------------------|-------------------------------|-------|--|
| S.No                        | Parameter                     | Value |  |
| 1                           | Engine speed(rev/min)         | 1500  |  |
| 2                           | Crank Radius (mm) 55          |       |  |
| 3                           | Piston pin offset/wrench (mm) | 0     |  |

#### IV. RESULTS

165

The various parameters used for the calculation of the engine performance are given below. Where,

CA means - Crank Angle.

L means - Angular momentum vector of fluid mass contained in selected cell zones with respect to swirl center.

Connecting Rod Length (mm)

Sa means - Swirl axis.

Tx means - Tumble x-axis.

Ty means -= Tumble y-axis.

Isa means - Moment of Inertia of the fluid mass about swirl axis.

4

Itx means - Moment of Inertia of the fluid mass about tumble x- axis.



Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

Ity means - Moment of Inertia of the fluid mass about tumble y- axis.

The below figure shows the temperature variations of a particle moved from the spark plug. The tracing can be carried through different colors.



Fig-5 particle traces by colored by temperature at CA 728.00 (deg), Fig-6 particle traces by colored by temperature at CA 728.00 (deg)

#### A. Counters of Static Temperature at different Crank Angles

The below counters shows the different temperatures at different crank angles. We can plot the counters at the crank angles like 570.25, 644.00, 664.00, 700.00, 712.00, and 728.00. Which is all these crank angles in the combustion stroke only. Counters of static temperature of the design without squish area





ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com



*B.* Counters of Static Temperatures at Different Crank Angles for a Cylinder without Squish Area Counters of static temperature of the design without squish area





ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com



Fig-4 Counters of Static Temperatures at Different Crank Angles

By comparing above two diagrams at the crank angle 555 degrees, the combustion chamber with squish area having high static temperature compare to the combustion chamber without squish area. Remaining all the diagrams are with same results i.e. high static temperatures.

#### C. Counters of Velocity Magnitude at different Crank Angles

The below counters shows the velocities of particles at different crank angles. We can plot the counters at the crank angles like 570.25, 644.00, 664.00, 700.00, 712.00, and 728.00



Applied School S

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

|                          | 1.056+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                          | 0.4041.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 866+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 8.436100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.238*00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 8.900+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.809400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 8.446700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|                          | 7.910+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.938700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 7.388+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.060+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 6.85e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.630+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 6.33e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.00+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|                          | 5.80e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.760+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 5.27e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.33e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 4.75e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.900+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 4.22e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.47e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 3.69e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.030+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 3.16e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.60+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|                          | 2.64e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 2.11e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.73e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 1.58e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 30e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|                          | 1.05e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 66-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y                                                      |
|                          | 5.27e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 33e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x · .z                                                 |
|                          | 0.00e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| Contours o               | f Velocity Magnitude (m/s) (Time=10444e-02) May 01 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2016 Contours of Valority Magnitude (m/s). (Time=1.4444.e.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | May 01 2016                                            |
| Contours o<br>Crank Angl | f Velocity Magnitude (m/s) (Time=1.0444e-02)<br>e=664.00(deg) ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2016<br>Contours of Velocity Magnitude (m/s) (Time=1.4444e-02)<br>Crank Angle=700.00(deg) ANSYS Fluent 15.0 (3d, dp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | May 01, 2016<br>, pbns, dynamesh, spe, ske, transient) |
| Contours o<br>Crank Angl | f Velocity Magnitude (m/s) (Time=1.0444e-02)<br>e=664.00(deg) ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2016<br>Contours of Velocity Magnitude (m/s) (Time=1.4444e-02)<br>Crank Angle=700.00(deg) ANSYS Fluent 15.0 (3d, dp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | May 01, 2016<br>, pbns, dynamesh, spe, ske, transient) |
| Contours o<br>Crank Angl | f Velocity Magnitude (m/s) (Time=1.0444e-02)<br>e=664.00(deg) ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contours of Velocity Magnitude (m/s) (Time=1.4444e-02)<br>Crank Angle=700.00(deg) ANSYS Fluent 15.0 (3d, dp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | May 01, 2016<br>, pbns, dynamesh, spe, ske, transient) |
| Contours o<br>Crank Angl | f Velocity Magnitude (m/s) (Time=1.0444e-02)<br>e=664.00(deg) ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans<br>8.11e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contours of Velocity Magnitude (m/s) (Time=1.4444e-02) Crank Angle=700.00(deg) ANSYS Fluent 15.0 (3d, dp 1.01e+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | May 01, 2016<br>, pbns, dynamesh, spe, ske, transient) |
| Contours o<br>Crank Angl | f Velocity Magnilude (m/s) (Time=1.0444e-02) May 01, 2<br>e=664.00(deg) ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, frans<br>8.11e+00<br>7.70e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contours of Velocity Magnitude (m/s) (Time=1.4444e-02)<br>Crank Angle=700.00(deg)     ANSYS Fluent 15.0 (3d, dp       1.01e+02<br>9.57e+01     9.57e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | May 01, 2016<br>, pbns, dynamesh, spe, ske, franslent) |
| Contours o<br>Crank Angl | f Velocity Magnitude (m/s) (Time=1.0444e-02) May 01, 2<br>e=664.00(deg) ANSYS Fluent 15.0 (3d, dp. pbns, dynamesh, spe, ske, trans<br>8:11e+00<br>7.70e+00<br>7.30e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2016     Contours of Velocity Magnitude (m/s) (Time=1.4444e-02)<br>Crank Angle=700.00(deg)     ANSY'S Fluent 15.0 (3d, dp       1.01e+02     9.57e+01     9.07e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May 01, 2016<br>, pbns, dynamesh, spe, ske, transient) |
| Contours o<br>Crank Angl | fVelocity Magnitude (m/s)     (Time=1.0444e-02)     May 01, 2       e=664.00(deg)     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       8.11e+00     7.70e+00       7.30e+00     6.89e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.01e+02       9.57e+01       8.56e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May 01, 2016<br>, pbns, dynamesh, spe, ske, fransient) |
| Contours o<br>Crank Angl | 1 Velocity Magnilude (m/s) (Time=1.0444e-02)     May 01, 2       e=664.00(deg)     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       8.11e+00     7.70e+00       7.30e+00     6.89e+00       6.49e+00     6.49e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.016+02     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01     9.576+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | May 01, 2016<br>, pbns, dynamesh, spe, ske, franslent) |
| Contours o<br>Crank Angl | 8.11e+00     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       8.11e+00     7.70e+00       7.30e+00     6.89e+00       6.90e+00     6.0ee+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.01e+02<br>9.57e+01<br>8.55e+01<br>7.56e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | May 01, 2016<br>, pbns, dynamesh, spe, ske, translent) |
| Contours o<br>Crank Angl | 1 Velocity Magnitude (m/s)     (Time=1.0444e-02)     May 01, 2       e=664.00(deg)     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       6.118+00     7.70e+00       7.70e+00     6.369e+00       6.369e+00     6.586e+00       6.586e+00     5.686+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.01e+02     9.57e+01       9.57e+01     8.56e+01       8.56e+01     7.55e+01       7.55e+01     7.55e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | May 01, 2016<br>, pbns, dynamesh, spe, ske, fransient) |
| Contours o<br>Crank Angl | 1 Velocity Magnilude (m/s)     (Time=1.0444e-02)     May 01, 2       e=664.00(deg)     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       8.11e+00     7.70e+00       7.70e+00     7.30e+00       6.89e+00     6.49e+00       5.68e+00     5.27e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.01e+02     9.57e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | May 01, 2016<br>, pbns, dynamesh, spe, ske, franslent) |
| Contours o<br>Crank Angl | 8 /10+00     7 /10+00     7 /20+00     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     6 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20     7 /20 | 1.01e+02<br>9.57e+01<br>9.07e+01<br>8.06e+01<br>7.05e+01<br>7.05e+01<br>0.05e+01<br>0.05e+01<br>0.05e+01<br>0.05e+01<br>0.05e+01<br>0.05e+01<br>0.05e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | May 01, 2016<br>, pbns, dynamesh, spe, ske, transleni) |
| Contours o<br>Crank Angl | 1 Velocity Magnitude (m/s)     (Time=1.0444e-02)     May 01, 2       e=664.00(deg)     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       8:11e+00     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       7:70e+00     7.70e+00       7:70e+00     6.89e+00       6:89e+00     6.98e+00       5:86e+00     5.58e+00       5:58e+00     4.86e+00       4.46e+00     4.46e+00                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.01e+02       9.57e+01       8.56e+01       8.56e+01       7.55e+01       7.55e+01       7.55e+01       5.56e+01       8.56e+01       8.56e+01       9.55e+01       5.56e+01       5.56e+01       9.55e+01       7.55e+01       7.55e+01       5.56e+01       5.56e+01 <t< th=""><th>May 01, 2016<br/>, pbns, dynamesh, spe, ske, translent)</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | May 01, 2016<br>, pbns, dynamesh, spe, ske, translent) |
| Contours o<br>Crank Angl | 1 Velocity Magnilude (m/s) (Time=1.0444e-02)     May 01, 2       e=664.00(deg)     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       8.11e+00     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       8.11e+00     7.70e+00       7.30e+00     6.89e+00       6.49e+00     5.27e+00       4.68e+00     4.68e+00       4.68e+00     4.66e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.01e+02     9.57e+01     9.57e+01       9.57e+01     9.57e+01     9.57e+01       9.55e+01     8.06e+01     7.56e+01       7.55e+01     6.05e+01     6.55e+01       5.55e+01     5.55e+01     5.55e+01       9.55e+01     5.55e+01     5.55e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | May 01, 2016<br>, pbns, dynamesh, spe, ske, franslent) |
| Contours o<br>Crank Angl | Velocity Magnitude (m/s)     (Time=1.0444e-02)<br>ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       8.11e+00     ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, trans       8.11e+00     7.70e+00       7.70e+00     6.49e+00       6.49e+00     5.88e+00       5.88e+00     4.48e+00       4.96e+00     3.85e+00       4.86e+00     3.85e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.01e+02<br>9.57e+01<br>9.55e+01<br>8.65e+01<br>8.65e+01<br>8.65e+01<br>7.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+01<br>8.55e+010000000000000 | May 01, 2016<br>, pbns, dynamesh, spe, ske, fransleni) |

| Contours of Velocity Magnitude (m/s) (Time=1.57<br>Crank Angle=712.00(deg) | 78e-02) May 01, 2016<br>ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, transient) | Contours of Velocity Magnitude (m/s) (Time=1.7<br>Crank Angle=728.00(deg) | 7556e-02) May 01, 2016<br>ANSYS Fluent 15.0 (3d, dp, pbns, dynamesh, spe, ske, transient |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 0.00e+00                                                                   |                                                                                         | 0.00e+00                                                                  |                                                                                          |
| 4.05e-01                                                                   | , <b>,</b> Z                                                                            | 5.04e+00                                                                  | XZ                                                                                       |
| 8.11e-01                                                                   | t <sup>Y</sup>                                                                          | 1.01e+01                                                                  | ť                                                                                        |
| 1.22e+00                                                                   |                                                                                         | 1.51e+01                                                                  | ×                                                                                        |
| 1.62e+00                                                                   |                                                                                         | 2.02e+01                                                                  |                                                                                          |
| 2.03e+00                                                                   |                                                                                         | 2.52e+01                                                                  |                                                                                          |
| 2.43e+00                                                                   |                                                                                         | 3.02e+01                                                                  |                                                                                          |
| 2.040+00                                                                   |                                                                                         |                                                                           |                                                                                          |

D. Counters of Velocity Magnitude for the Design Without Squish Area





ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com



E. Counters of Velocity Magnitude at different Crank Angles for a Cylinder Without Squish Area

We can also know the performance of an engine model by using following graphs. Swirl ratio vs crank angle graph shows how the ratio at different crank angles.





International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com

1) Chart-1 Swirl Ratio Vs Crank Angle: The combustion chamber with squish area having high swirl ratio compare to the combustion chamber without squish area. Creating this area burnt the remaining gases in the combustion chamber.



We can easily identify where the maximum amount of heat can be released. The maximum amount of heat can be released in between the crank angles 720-730.



Chart-2 apparent heat release rate vs crank angle

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, August 2017- Available at www.ijraset.com



2)



#### Chart-4 max velocity magnitude vs crank angle

#### V. CONCLUSION

The combustion simulation is carried by using a geometry having a squish area at the top of the piston. The piston moment can be visualized through the animation and the velocity magnitude curves are plotted for different crank angles starting from 570 to 833. The designed single cylinder engine is simulated for a  $60^{\circ}$  sector angle cylinder cycle. The In cylinder combustion simulation data file is displaying swirl and tumble for zones of fluid-ch and fluid-piston-layer. The text file for swirl, x-tumble, y-tumble and moment of inertia as a function of crank angle is written in the working directory. The graphs indicates that the cylinder with squish area gives the maximum heat which gives the maximum power. This process can be repeated for different input designs and compare the results with one another up to getting the best design for our requirement.

#### REFERENCES

- Pathak Yogesh R, Deore Kailas D, PatilVijayendra M, "In Cylinder Cold Flow CFD Simulation of IC Engine Using Hybrid Approach" IJRET: International Journal of Research in Engineering and Technology; Volume: 03 Special Issue: 08 | NCAME-2014
- [2] A Lakshman, C P Karthikeyan and R Padmanabhan "3D In-cylinder Cold Flow Simulation Studies in an IC Engine using CFD" International journal of research in mechanical engineering volume1, july-september, 2013
- [3] Feilong Liu, Gehan A. J. Amaratunga and Nick Collings and Ahmed Soliman "An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation" SAE International 2012-01-0896 published 04/16/2012.
- [4] Mathur M.L. and Sharma R.P., internal combustion engines DhanpatRai publication.
- [5] ANSYS user's guide, ANSYS, Inc. Southpointe, Canonsburg, PA 15317, 2012.
- [6] Lakshman A, Karthikeyan CP and Davidson Jebaseelan (2012). CFD studies on In-cylinder air motion during different strokes of an IC Engine. SET Conference 2012 VIT University Chennai.
- [7] DivyanshuPurohit, Pragya Mishra, VishwanathBanskar," Flow Simulation of an I.C. Engine in FLUENT, ANSYS 14.0", International Conference On Emerging Trends in Mechanical and Electrical Engineering (ICETMEE-13th-14th March 2014)











45.98



IMPACT FACTOR: 7.129







# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24\*7 Support on Whatsapp)