

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: IX Month of publication: September 2017 DOI: http://doi.org/10.22214/ijraset.2017.9043

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Comparison of carbon graphite piston with other materials by using finite element analysis method where temperature applied on the top of piston head.

Jatender Datta¹, Dr. Sahib Sartaj Singh²

¹Research Scholar, PhD (Mechanical Engg.), Desh Bhagat University, Mandi Gobindgarh (India) ²Workshop Suptt., Punjabi University, Patiala (India)

Abstract: This paper describes the stress distribution, displacement and Strain of aluminum alloy 2618, Aluminum Alloy 4032 and carbon graphite pistons by using finite element Analysis (FEA). The parameters used for the simulation are operating gas temperature and material properties of pistons. The specifications used for the study of these pistons belong to four stroke 100cc hero bike engine. This paper illustrates the procedure for analytical design of aluminum alloy 4032, aluminum alloy 2618 and carbon graphite pistons using specifications of four stroke 100cc hero bike engine. The results predict the maximum stress and critical region on all of these pistons using FEA. It is important to locate the critical area of concentrated stress for appropriate modifications. The CAD model of the pistons was drawn by using Solidworks (Feature module) and Simulation module was used to mesh the pistons, Static analysis with temperature applied on the top of piston head.

Keywords: FEA on piston, stress plot. aluminum alloy 2618 piston, IC engine piston, carbon graphite piston analysis, stress analysis on piston, strain, displacement, analysis on aluminum alloy 4032 piston.

I. INTRODUCTION

Piston is a cylindrical member which is placed inside cylinder and on the combustion gases exerts pressure. It is made up of cast iron or aluminum alloy. In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. It absorbs the side thrust resulting from obliquity of the connecting rod. It also dissipates the large amount of heat generated by the combustion gases form the combustion chamber to the cylinder wall. In some engines, the piston also acts as a valve by covering and uncovering ports in the cylinder wall.

II. FINITE ELEMENT ANALYSIS (FEA)

FEA is a computerized method for predicting how a product reacts to real-world forces, vibration, heat, fluid flow and other physical effects. Finite element analysis shows whether a product will break, wear out or work the way it was designed. It is an advanced engineering tool that is used in design and to augment/replace experimental testing.

III. METHODOLOGY OF PROPOSED WORK

The methodology of this work is based upon information collected and processed the study and research phase. The technique to be applied for the design of piston is as follows

- A. Data gathering of recent development in IC engine piston.
- *B.* Reverse engineering this piston, and calculated dimensions were measured and reproduced as a 3-D model in Solidworks software, and analyzed in Solidworks Simulation.
- C. Selection of Material from software's library
- D. Meshing of Piston.
- *E.* Applying Boundary conditions.
- F. Result calculation.
- G. Comparing Total deformation and Max. Von misses stress in Static analysis.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue IX, September 2017- Available at www.ijraset.com

Туре	Air cooled, 4 - stroke single cylinder OHC		
Displacement	97.2 cc		
Max. Power	6.15kW (8.36 Ps) @8000 rpm		
Max. Torque	0.82kg - m (8.05 N-m) @ 5000 rpm		
Max. Speed	87 Kmph		
Bore x Stroke	50.0 mm x 49.5 mm		
Carburetor	Side Draft, Variable Venturi Type with TCIS		
Compression Ratio	9.9 : 1		
Starting	Kick / Self Start		
Ignition	DC - Digital CDI		
Oil Grade	SAE 10 W 30 SJ Grade, JASO MA Grade		
Air Filtration	Dry, Pleated Paper Filter		
Fuel System	Carburetor		
Fuel Metering	Carburetion		

IV. ENGINE SPECIFICATIONS

V. REVERSE ENGINEERING THE PISTON

With the help of measuring instruments like vernier caliper etc. the dimensions of the model piston were measured. By using this measurement 3D model of the piston were drawn using Solidworks 3D modeling software as below:

VI. BOUNDARY CONDITIONS AND LOADS

- A. Maximum Temperature at top surface of the piston 100°C.
- B. Piston pin holes are fixed.Note: Model, meshing, Units, boundary conditions and loads will be same in all tests.

VII. ANALYSIS ON ALUMINUM ALLOY 4032 PISTON

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue IX, September 2017- Available at www.ijraset.com

Model Information

Model name: Piston 100cc_Hero Splendor				
Solid Bodies		-		
Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified	
LPattern2	Solid Body	Mass:0.0729602 kg Volume:2.7224e-005 m^3 Density:2680 kg/m^3 Weight:0.71501 N	DEFAULT	

Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density: Shear modulus: Thermal expansion coefficient:	4032-T6 Linear Elastic Isotropic Max von Mises Stress 3.15e+008 N/m^2 3.8e+008 N/m^2 7.9e+010 N/m^2 0.34 2680 kg/m^3 2.6e+010 N/m^2 1.94e-005 /Kelvin	Solid Body 1(LPattern2)(Piston 100cc_Hero Splendor)

Mesh Information - Details

Total Nodes	139938
Total Elements	86193
Maximum Aspect Ratio	167.85
% of elements with Aspect Ratio < 3	90.8
% of elements with Aspect Ratio > 10	0.39
% of distorted elements(Jacobian)	0
Time to complete mesh(hh;mm;ss):	00:00:36
Computer name:	JATENDERDATTA

Model name: Piston 100cc_Hero Splendor Study name: analysis_temp_4032 piston Mesh type: Solid mesh

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue IX, September 2017- Available at www.ijraset.com

VIII. STRESS, STRAIN & DISPLACEMENT PLOTS

IX. ANALYSIS ON ALUMINUM ALLOY 2618 PISTON Volumetric Properties

LPattern2 Solid Body	Mass:0.0751381 kg Volume:2.7224e-005 m^3 Density:2760 kg/m^3	D:\phd\Piston 100cc_Hero Splendor.SLDPRT	
		Weight:0.736354 N	Aug 09 16:08:19 2017

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue IX, September 2017- Available at www.ijraset.com

Material Properties

Name: 2618-T61 (SS) SolidBody 1(LPattern2)(Piston Model type: Linear Elastic Isotropic Default failure criterion: Max von Mises Stress Yield strength: 3.72e+008 N/m^2 Tensile strength: 4.41e+008 N/m^2 Elastic modulus: 7.45e+010 N/m^2 Poisson's ratio: 0.33 Mass density: 2760 kg/m^3 Shear modulus: 2.7e+010 N/m^2 Thermal expansion 2.2e-005 /Kelvin coefficient: 0.00000000000000000000000000000000000	Model Reference	Properties		Components
		Name: Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density: Shear modulus: Thermal expansion coefficient:	2618-T61 (SS) Linear Elastic Isotropic Max von Mises Stress 3.72e+008 N/m^2 4.41e+008 N/m^2 7.45e+010 N/m^2 0.33 2760 kg/m^3 2.7e+010 N/m^2 2.2e-005 /Kelvin	SolidBody 1(LPattern2)(Piston 100cc_Hero Splendor)

Study (II)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue IX, September 2017- Available at www.ijraset.com

XI. ANALYSIS ON CARBON GRAPHITE PISTON

Volumetric Properties

Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified
LPattern2			
	Solid Body	Mass:0.0609817 kg Volume:2.7224e-005 m^3 Density:2240 kg/m^3 Weight:0.59762 N	D:\phd\Piston 100cc_Hero Splendor.SLDPRT Aug 09 16:08:19 2017

Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density: Thermal expansion coefficient:	C (Graphite) Linear Elastic Isotropic Unknown 1.20594e+008 N/m^2 1.00826e+008 N/m^2 2.1e+011 N/m^2 0.28 2240 kg/m^3 1.3e-005 /Kelvin	SolidBody 1(LPattern2)(Piston 100cc_Hero Splendor)
Curve Data·N/A			

XII. STRESS, STRAIN & DISPLACEMENT PLOTS

Study (III)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue IX, September 2017- Available at www.ijraset.com

XIII. CONCLUSION

In the conclusion, according to above results, aluminum alloy 2618 has maximum stress value as compared to aluminum alloy 4032. But the yield strength of aluminum 2618 is more than aluminum 4032 .In this case aluminum alloy 2618 is better material than aluminum alloy 4032. But the maximum stress value of the carbon graphite is more than aluminum alloy 4032 and 2618. But the deformation scale is much higher than aluminum 4032 & 2618.

Moreover, aluminum alloy 4032 is light in weight in the comparison of aluminum alloy 2618. But according to volumetric properties Carbon Graphite material is much lighter than aluminum 4032 and aluminum 2618.

Furthermore, according to material properties aluminum alloy 4032 has low Thermal expansion coefficient as compare to aluminum alloy 2618. On the other hand, carbon graphite has low thermal coefficient as compared to both of material (aluminum 4032 and aluminum 2618)

Moreover, aluminum alloy 2618 has good thermal conductivity as compared to aluminum alloy 4032. But the carbon graphite has excellent thermal conductivity as compared to aluminum alloy 4032 and aluminum alloy 2618.

At last, according to the above study, Carbon Graphite piston is much better as compared to aluminum alloy 4032 and aluminum alloy 2618 for IC engine.

Carbon shows an excellent resistance to thermal shock.

REFERENCES

- [1] Ajay Raj Singh et al., Dr. Pushpendra Kumar Sharma, "Design, Analysis and Optimization of Three Aluminum Piston Alloys Using FEA" Int. Journal of Engineering Research and Applications, ISSN : 2248-9622, Vol. 4, Issue 1 Version 3, January 2014, pp.94-102.
- [2] M.X. Calbureanu et al.,, "The finite element analysis of the thermal stress distribution of a piston head" International Journal OF Mechanics, Issue 4, Volume 7, 2013, pp- 467-474.
- [3] S. Srikanth Reddy et al., Thermal Analysis and Optimization of I.C. Engine Piston Using Finite Element Method, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 12, December 2013, pp 7834-7843.
- [4] A. R. Bhagat et al., Thermal Analysis And Optimization Of I.C. Engine Piston Using finite Element Method, International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug 2012 pp- 2919-2921.
- [5] Vinay V. Kuppast et al., "Thermal Analysis of Piston for the Influence on Secondary motion", International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622, Vol. 3, Issue 3, May-Jun 2013, pp.1402-1407
- [6] Bhaumik Patel, Ashwin Bhabhor (2012) "thermal analysis of a piston of reciprocating air compressor" IJAERS, ISSN: 2249–8974, PP. 73-75..
- [7] RS Khurmi and JK Gupta "Machine Design" Eurasia publishing house (pvt.) ltd. Ram Nagar, New Delhi -110055, http://www.simpopdf.com, 2005
- [8] S.S. Feng et al., An experimental and numerical study of finned metal foam heat sinks under impinging air jetcooling, International Journal of Heat and Mass Transfer 77 (2014) 1063–1074.
- [9] M.M. Haque et al., "Effect of superheating temperatures on microstructure and properties of strontium modified aluminium-silicon eutectic alloy" Journal of Materials Processing Technology 162–163 (2005) 312–316

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)