

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: IX Month of publication: September 2017 DOI: http://doi.org/10.22214/ijraset.2017.9048

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Q-Hypergeometric Series and Their Transformation Formulae

Dr. Rajesh Pandey¹

¹Maharishi University of Information Technology Lucknow 22601, India.

Abstract: In this paper, making use of certain known summation formulae, an attempt has been made to establish transformation formulae, for q- hypergeometric series.

Keywords: Summation Formulae, Transformation Formulae, Hypergeometric Series, Identity, Inter-Series

I. INTRODUCTION

In 1972 Verma [1] established the following expansion formula

$$\sum_{n=0}^{\infty} \frac{(-x)^n q^{n(n-1)/2}}{(q, \gamma q^n; q)_n} \sum_{k=0}^{\infty} \frac{(\alpha, \beta; q)_{n+k}}{(q, \gamma q^{2n+1}; q)_k} B_{n+k} x^k \sum_{j=0}^{n} \frac{(q^{-n}, \gamma q^n; q)}{(q, \alpha, \beta; q)_j} A_j(wq)^j = \sum_{n=0}^{\infty} A_n B_n \frac{(xw)^n}{(q; q)_n}$$
(1.1)

In this paper, making use of (1.1) and certain known summation formulae, an attempt has been made to establish transformation formulae for q-hypergeometric series.

II. NOTATIONS AND DEFINITIONS

The generalized basic hypergeometric function is defined as

$${}_{A}\Phi_{B} \boxtimes \begin{bmatrix} (a); q; z\\ (b); q^{i} \end{bmatrix} = \sum_{r=0}^{\infty} q^{\frac{ir(r-1)}{2}} \frac{\prod_{j=1}^{A} (a_{j}; q)_{r} z^{r}}{\prod_{j=1}^{B} (b_{j}; q)_{r} (q; q)_{r}}$$
(2.1)

Where

$$(a;q)_{r} = (1-a)(1-aq) \dots (1-aq^{r-1}); (a;q)_{0} = 1, i > 0, |q| < 1, |z| < \infty$$
(2.2)

and for i = 0, max (|q|, |z|) < 1. Also stands for a sequences of A – parameters of the form

$$a_1, a_2, \dots, a_A$$
 Type equation here.

We shall make use of following known summations

$${}_{4}\Phi_{3}\begin{bmatrix}a^{2},a^{2}q,e^{4}q^{2n},q^{-2n};q^{2};q^{2}\\a^{4}q^{2},e^{2},e^{2}q\end{bmatrix} = \frac{(-q;q)_{n}(e^{2}/a^{2};q)_{n}a^{2n}}{(e^{2};q)_{n}(-a^{2}q;q)_{n}}.$$
(2.3)

$${}_{4}\Phi_{3}\begin{bmatrix}a^{2},a^{2}q,e^{4}q^{2n},q^{-2n};q^{2};q^{2}\\a^{4},e^{2}q,e^{2}q^{2}\end{bmatrix} = \frac{(-q;q)_{n}(e^{2};q^{2})_{n}(e^{2}q/a^{2};q)_{n}a^{2n}}{(-a^{2};q)_{n}(e^{2};q)_{n}(e^{2}q^{2};q^{2})_{n}},$$
(2.4)

III. MAIN RESULTS

We shall establish our main results

$${}_{10}\Phi_{9}\begin{bmatrix}-e^{2}, eiq, -eiq, eq, -eq, e^{2}/a^{2}, \alpha, -\alpha, \beta, -\beta; q; -\frac{e^{4}a^{2}q^{2}}{\alpha^{2}\beta^{2}}\\ei, -ei, -e, e, -a^{2}q, -e^{2}q/\alpha, e^{2}q/\alpha, -e^{2}q/\beta, e^{2}q/\beta; q^{2}\end{bmatrix}$$

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue IX, September 2017- Available at www.ijraset.com

$$= \frac{(e^{4}q^{2}/\alpha^{2}\beta^{2}, e^{4}q^{2}; q^{2})_{\infty}}{(e^{4}q^{2}/\alpha^{2}, e^{4}q^{2}/\beta^{2}; q^{2})_{\infty}} {}_{4}\Phi_{3} \begin{bmatrix} a^{2}, a^{2}q, \alpha^{2}, \beta^{2}; q^{2}; \frac{e^{4}q^{2}}{\alpha^{2}\beta^{2}} \\ a^{4}q^{2}, e^{2}, e^{2}q \end{bmatrix}$$

$$= \frac{(e^{4}q^{2}/\alpha^{2}\beta^{2}, e^{4}q^{2}; q^{2})_{\infty}}{(e^{4}q^{2}/\alpha^{2}, e^{2}q/\alpha, e^{2}q/\alpha, -e^{2}q/\beta, e^{2}q/\beta; q^{2}]}$$

$$= \frac{(e^{4}q^{2}/\alpha^{2}\beta^{2}, e^{4}q^{2}; q^{2})_{\infty}}{(e^{4}q^{2}/\alpha^{2}, e^{4}q^{2}/\beta^{2}; q^{2})_{\infty}} {}_{4}\Phi_{3} \begin{bmatrix} a^{2}, a^{2}q, \alpha^{2}, \beta^{2}; q^{2}; \frac{e^{4}q^{2}}{\alpha^{2}\beta^{2}} \\ a^{4}, e^{2}q, e^{2}q^{2} \end{bmatrix}$$

$$(3.1)$$

Proof of (3.1) and (3.2)

Replacing $q_{,\alpha,\beta}$ by $q^{2}_{,\alpha^{2},\beta^{2}}$ respectively and then choosing

$$A_{j} = \frac{(a^{2}, a^{2}q, \alpha^{2}, \beta^{2}; q^{2})_{j}}{(a^{4}q^{2}, e^{2}, e^{2}q; q^{2})_{j}}, \gamma = e^{4}, w = 1, B_{n} = 1,$$

 $x = e^4 q^2 / \alpha^2 \beta^2$ in (1.1) and making use of (2.3) and Gauss's summation formula in order to sum the inner-series in the left hand side we get (3.1) after some simplifications.

Similarly, replacing $q_1 \alpha_1 \beta$ by $q^2_1 \alpha^2_1 \beta^2$ respectively and then choosing

$$A_{j} = \frac{(a^{2}, a^{2}q, \alpha^{2}, \beta^{2}; q^{2})_{j}}{(a^{4}, e^{2}q, e^{2}q^{2}; q^{2})_{j}}, w = 1, \gamma = e^{4}, B_{n} = 1, x = \frac{e^{4}q^{2}}{\alpha^{2}\beta^{2}}$$

In (1.1) and making use of use of (2.4) and Gauss's summation formula in order to sum the inner series in the left hand side we get (3.2) after some simplifications.

Taking $\alpha, \beta \rightarrow \infty$ in (3.1) we get

$$\sum_{r=0}^{\infty} \frac{(-e^2;q)_r (e^2/a^2;q)_r}{(q;q)_r (-a^2q;q)_r} \left(\frac{1-e^4q^{4r}}{1-e^4}\right) q^{3r(r-1)} (-e^4a^2q^2)^r$$

$$= (e^4q^2;q^2)_{\infty} \sum_{r=0}^{\infty} \frac{(a^2,a^2q;q^2)_r e^{4r}q^{2r^2}}{(q^2,a^4q^2,e^2,e^2q;q^2)_r}$$
(3.3)

Taking a = 1 and $e^4 = 1$ in (3.3) we obtain

$$\sum_{r=-\infty}^{\infty} (-)^r q^{r(3r-1)} = (q^2; q^2)_{\infty}$$
(3.4)

Which on replacing q^2 by q gives the Euler's pentagonal identity:

$$\sum_{r=-\infty}^{\infty} (-)^r \, q^{r(3r-1)/2} = (q;q)_{\infty},$$

Taking a = 1 and $e^4 = q^2$ in (3.3) we get another identity:

$$\sum_{r=0}^{\infty} (-)^r (1 - q^{4r+2}) q^{r(3r+1)} = (q^2; q^2)_{\infty}.$$
(3.5)

Taking $a^2 = 1$ in (3.1) we obtain the following summation formula:

$${}_{5}\Phi_{4}\begin{bmatrix} e^{4}, e^{2}q^{2}, -e^{2}q^{2}, \alpha^{2}, \beta^{2}; q^{2}; -e^{4}q^{2}/\alpha^{2}\beta^{2} \\ e^{2}, -e^{2}, e^{4}q^{2}/\alpha^{2}, e^{4}q^{2}/\beta^{2}; q^{2} \end{bmatrix}$$

$$=\frac{(e^{4}q^{2}/\alpha^{2}\beta^{2}, e^{4}q^{2}; q^{2})_{\infty}}{(e^{4}q^{2}/\alpha^{2}, e^{4}q^{2}/\beta^{2}; q^{2})_{\infty}}.$$
(3.6)

Taking a = e and $\beta = eq^{1/2}$ in (3.1) we get the following summation formula:

$${}_{4}\Phi_{3}\begin{bmatrix} -e^{2}, eiq, -eiq, e^{2}/a^{2}; q; -a^{2}q \\ ei, -ei, -a^{2}q; q^{2} \end{bmatrix} = \frac{(-e^{2}q; q)_{\infty}}{(-a^{2}q; q)_{\infty}}.$$
(3.7)

Taking $a \rightarrow 0$ in (3.7) we get:

$$\sum_{r=0}^{\infty} \frac{(-e^2;q)_r}{(q;q)_r} (1 + e^2 q^{2r}) e^{2r} q^{r(3r-1)/2} = (-e^2;q)_{\infty}$$
(3.8)

Which for $e^2 = q$ yields:

$$\sum_{r=0}^{\infty} \frac{(-q;q)_r}{(q;q)_r} (1+q^{2r+1})q^{r(3+1)/2} = (-q;q)_{\infty}$$
(3.9)

Taking $\alpha, \beta \to \infty$ in (3.2) we get:

$$\sum_{r=0}^{\infty} \frac{(-e^2;q)_r (1+e^2q^{2r})(e^2q/a^2;q)_r}{(q;q)_r (1+e^2)(-a^2;q)_r} q^{3r(r-1)} (-e^4a^2q^2)^r$$

= $(e^4q^2;q^2)_{\infty} \sum_{r=0}^{\infty} \frac{(a^2,a^2q;q^2)_r (e^4q^2)^r q^{2r(r-1)}}{(q^2,a^4,e^2q,e^2q^2;q^2)_r}$ (3.10)

For $a \rightarrow 1$, (3.10) gives:

$$\sum_{r=0}^{\infty} \frac{(-e^2, e^2q; q)_r (1 + e^2q^{2r})}{(q; q)_r (-1; q)_r (1 + e^2)} q^{3r(r-1)} (-e^4q^2)^r$$

$$= (e^2q^2; q^2)_{\infty} \left\{ 1 + \frac{1}{2} \sum_{r=1}^{\infty} \frac{(q; q^2)_r e^{4r} q^{2r^2}}{(q^2, e^2q; q^2; q^2)_r} \right\}$$
(3.11)

Taking $e^2 = 1$ in (3.11) we find :

$$\sum_{r=0}^{\infty} (1+q^{2r})(-)^r q^{r(3r-1)} = (q^2;q^2)_{\infty} \left\{ 1 + \sum_{r=0}^{\infty} \frac{q^{2r^2}}{(q^2;q^2)_r^2} \right\},$$

Which by an appeal to Jacobi's triple product identity yields the well known identity (after replacing q^2 by q)

$$\sum_{r=0}^{\infty} \frac{q^{r^2}}{(q;q)_r^2} = \frac{1}{(q;q)_r}$$
(3.12)

Similarly, several results can also be obtained.

IV. CONCLUSIONS

In this paper, transformation formulae for q-hypergeometric series have been established by using certain known summation formulae. Eight important results have been derived including Euler's pentagonal identity and Jacobi's triple product identity.

V. ACKNOWLEDGMENT

My thanks are due to Dr. G.C Chaubey Ex Associate Professor & Head department of Mathematics TDPG College Jaunpur and Professor B. Kunwar Department of Mathematics IET, Lucknow for their encouragement and for providing necessary support. I am extremely grateful for their constructive support.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

Volume 5 Issue IX, September 2017- Available at www.ijraset.com

REFERENCES

- [1] Gasper, G. and Rahman, M. (1991): Basic hypergeometric series, Cambridge University Press.
- [2] Agarwal, R.P., Manocha, H.L. and Rao, K.Srinivas (2001); Selected Topics in special functions, Allied Publisher Limited, New Delhi.
- [3] Agarwal, R.P.: Generalized hypergeometric series and its application to the theory of combinatorial analysis and partition theory (Unpublished monograph).
- [4] L.J. Slater: Generalized Hypergeometric Functions, Cambridge University Press,(1966).
- [5] S. Ramanujan : Notebook, Vol. II, Tata Institute of Fundamental Research, Bombay, (1957).
- [6] Verma and Jain "Some summation formulae of basic hypergeometric series", Indian J. of Pure and Applied Math. 11 (8), 1021-1038.
- [7] Verma, A. "Some transformation of series with arbitrary terms", Institute of Lamardo (Rend. Se.) A 106 (1972) 342-253.
- [8] Verma, A. and Jain, V.K. "Some summation formulae for non-terminating basic hypergeometric series". Siam. J. Math. Anal. Vol. 16 No. 3 (1985) 646-655.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)