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Abstract. Graphics processing units (GPUs) are increasingly being used for general purpose pro-cessing. We present 
implementations of large integer modular exponentiation, the core of public-key cryptosystems such as RSA, on a DirectX 10 
compliant GPU. DirectX 10 compliant graphics pro-cessors are the latest generation of GPU architecture, which provide 
increased programming flex-ibility and support for integer operations. We present high performance modular exponentiation 
implementations based on integers represented in both standard radix form and residue number system (RNS) form. We show 
how a GPU implementation of a 1024-bit RSA decrypt primitive can outperform for the first time a comparable CPU 
implementation by up to 4 times. We present how an adaptive approach to modular exponentiation involving implementations 
based on both a radix and a residue number system gives the best all-around performance on the GPU. We also highlight the 
criteria necessary to allow the GPU to improve the performance of public key cryptographic operations. 

I. INTRODUCTION 

The graphics processing unit (GPU) has enjoyed a large increase in floating point performance compared with the CPU in 
the last number of years. The traditional CPU has leveled off in terms of clock frequency as power and heat concerns 
increasingly become dominant restrictions. The latest GPU from Nvidia’s GT200 series reports a peak throughput of almost 
1 TeraFlop, whereas the latest Intel CPUs reported throughput is in the order of 100 GFlops [1]. This competitive advantage 
of the GPU comes at the price of a decreased applicability to general purpose computing. The latest generation of graphics 
processors, which are DirectX 10 [2] compliant, support integer processing and give more control over the processor’s 
threading and memory model compared to previous GPU generations. We use this new generation of GPU to accelerate 
public key cryptography. In particular we use an Nvidia 8800GTX GPU with CUDA [3] to investigate the possibility of 
high speed 1024-bit RSA decryption. We focus on 1024-bit RSA decryption as it shows a high arithmetic intensity, ratio of 
arithmetic to IO operations, and also allows easy comparison with CPU implementations. We exploit the new GPU’s 
flexibility to support a GPU sliding window [4] exponentiation implementation, based on Montgomery exponentiation [5] 
using both radix and residue number system (RNS) representations. We investigate both types of number representation 
showing how GPU occupancy and inter thread communication plays a central role to performance. Regarding the RNS 
implementations, we exploit the GPU’s flexibility to use a more optimised base extension approach than was previously 
possible. We also explore various GPU implementations of single precision modular multiplication for use within the 
exponentiation approaches based on RNS. 

II. STANDARD MONTGOMERY EXPONENTIATION ON THE GPU 

We present two different GPU implementations with varying degrees of parallelism incorporating the Montgomery 
reduction method in radix representation and pencil-and-paper multiplication. One obser-vation that applies to all 
implementations of exponentiation on a CUDA compatible device is that it is only suitable to use a single exponent per 
CUDA warp, and in some scenarios per CUDA block. The reason for this is that the exponent largely determines the flow of 
control through the code. These con-ditional code paths dependant on the exponent cause thread divergence. When threads 
within a CUDA warp diverge on a single processor, all code paths are executed serially, thus a large performance overhead 
is incurred for threads that diverge for large portions of code. If inter thread communication is required, a synchronisation 
barrier must be used to prevent race conditions occurring. All threads within a CUDA block that perform a synchronisation 
barrier must not 
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all threads within a single CUDA block are required to execute the same path at points of synchronisa-tion and so it follows that for 
exponentiation that uses inter thread communication, only one exponent can be used per CUDA block. 

A. Serial Approach 
Each thread within this implementation performs a full exponentiation without any inter thread com-munication or cooperation. 
This is a standard optimised implementation of an exponentiation using the Quisquater and Couvreur CRT approach [6], operating 
on two independent pairs of 16 limb numbers. The approach also uses the sliding window technique to reduce the number of 
Montgomery multiplies and squares required. As a single thread computes an exponentiation independently, a single exponent must 
be used across groups of 32 threads. In terms of RSA, assuming peak performance, this imple-mentation is restricted to using a 
maximum of 1 key per 32 primitives (or messages). As we are using the CRT based approach to split the input messages in two, we 
also use two different exponents for a single message. Thus a message must be split into different groups of 32 threads to avoid 
guaranteed thread divergence. We have adopted a simple strategy to avoid divergence, whereby CUDA blocks are used in pairs. 
The first block handles all 16 limb numbers relating to the modulus p and the second block handles all numbers relating to the 
modulus q, where n = pq and n is the original modulus. The threading model employed is illustrated in Figure 1. This separation of 
p and q related data is also used in the implementations in Section 2.2 and 3. 

Pair: Msg 1 mod p, Msg 1 mod q 
 
 
 
 
 
 
 

Fig. 1. Serial Thread Model 
The added support for integers, bitwise operations and increased memory flexibility such as scatter operations, in the 8800GTX, 
allows this implementation to execute largely in a single kernel call. The byte and bit manipulation operations required for the 
efficient implementation of sliding window are now straightforward. The macro level details of this algorithm are largely standard 
and as such, we do not list the high level steps of the algorithm. However, we draw attention to the following optimisations that 
were applied within the implementation: all nxn limb multiplies used cumulative addition to reduce memory operations [7]; all 
squaring requirements were optimised to reduce the number of required multiplies [4]; nxn limb multiplies mod R were truncated, 
again to remove redundant multiplies; and the final two steps within Montgomery multiplication were combined into a single nxn 
multiply and accumulate. 
1) Memory usage: The concept of a uniform, hierarchical memory structure such as a CPU’s L1/L2 cache, etc does not exist on 

the GPU and performance cliffs can be encountered without careful memory planning. The following are the highlights of the 
various memory interactions of this implementation. Note that the implementations in Section 2.2 and Section 3 use similar 
adaptive memory approaches as described below. 

2) Adaptive memory approaches: The sliding window technique requires the pre-calculation of var-ious powers of the input data. 
This data is used during the exponentiation process to act as one of the n limb inputs into an nxn multi-precision multiplication. 
There are two options on how to handle the storage and retrieval of this pre-calculated data. 1. The pre-calculation is done on 
the GPU and is written to global memory. The data is stored in a single array with a stride width equal to the number messages 
being processed in a single kernel call multiplied by the message size. Reads are then made subsequently from this array direct 
from global memory. In this scenario only a single kernel call is required for the exponentiation. 2. Unfortunately the data reads 
cannot be coalesced as each thread reads a single limb which is separated by 16 integers from the next message. Coalesced 
global reads require the data to start at a 128-bit boundary for a warp and require each thread of the warp to read consecutively 
from memory with a stride of up to 4 32-bit integers wide. Non-coalesced reads generate separate memory transactions thus 
significantly reducing load/store throughput. To ameliorate this the sliding window pre-calculation data is first generated in an 
initialisation kernel writing its results to global memory. A texture can then be bound to this memory and the subsequent 
exponentiation kernel can use the pre-calculation data via texture references. Note that texture access uses the texture cache, 
which is a local on chip cache, however textures cannot be written to directly hence the need for a separate initialisation kernel. 
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The first approach described above is better for smaller amounts of data. The second approach in beneficial for larger amounts 
of data when the advantage of texture use outweighs the fixed overhead of the extra kernel call. Another adaptive memory 
approach concerns the exponent. As mentioned, the exponent must be the same across a warp number of threads, thus all 
threads within a warp, when reading the exponent, access the same memory location at any one time. Constant memory has the 
best performance under this scenario [8], however is limited to 64KB on the G80. As each exponent requires 32 integers worth 
of storage, in an RSA 1024-bit context we can use constant memory for up to 512 different keys. If the amount of exponents 
exceed this threshold (in practice lower than 512 different keys as a small amount of constant memory is used for other 
purposes and a new key is used for at least each new block whether needed or not for lookup efficiency) then texture memory is 
used. 

3) Other memory considerations: In an aim to increase the nxn multiplication performance we have allocated all of the on chip fast 
shared memory for storing and retrieving the most commonly used n limb multiplicand of the nxn operation. The less 
frequently accessed multiplier is retrieved from textures when possible. The input and output data is non exceptional in this 
implementation save that it cannot be coalesced due to the message stride within memory. A convolution of multiple messages 
could be an option to offset the lack of coalescing though this has not been explored here and would seem to be just adding 
extra steps to the CPU processing side. The other per key variables, −n−1(mod R) and R2(mod n) (for use in generating the 
Montgomery representation of the input) for both moduli p and q, where n = pq, are stored and loaded via texture references. In 
the context of RSA decryption these variables are assumed to be pre-calculated and it should be noted that performance will 
degrade slightly if these have to be calculated with a high frequency. The results for this implementation are presented in 
Section 2.3 in conjunction with the parallel approach described below. Note that two parts of the exponentiation are not 
included in these implementations, the initial x(mod p), x(mod q) and the final CRT to recombine, these are done on the CPU. 
This is also the case for all implementations reported in this paper. These steps contribute little to the overall exponentiation 
runtime and so the performance impact is expected to minor. 

B. Parallel Approach 
This approach uses the same macro structure as the algorithm used above, however it executes the various stages within the 
algorithm in parallel. Each thread is responsible for loading a single limb of the input data, with 16 threads combining to calculate 
the exponentiation. Each thread undergoes the same high level code flow, following the sliding window main loop, however the 
Montgomery multiplication stages are implemented in parallel. This approach relies heavily on inter thread communication, which 
has a performance overhead as well as an implication that only one exponent is supported per CUDA block. As the number of 
threads per block in this implementation is limited to 256, due to shared resource constraints, the number of 1024-bit RSA 
primitives per key in effect is limited to a minimum of 16. The nxn multiplies within the Montgomery multiplication are parallelised 
by their separation into individual 1xn limb multiplications. Each thread is independently responsible for a single 1xn limb multiply. 
This is followed by a co-operative reduction across all threads to calculate the partial product additions. This parallel reduction 
carries with it an overhead where more and more threads are left idle. Figure 2 shows the distribution of the nxn operation across the 
16 threads and its subsequent additive reduction. It also shows the use of shared memory to store the entire operations output and 
input of each stage. Also shown in the Figure 2 are the synchronisation points used to ensure all shared memory writes are 
committed before subsequent reads are performed, which add a signification performance burden. The optimisations applied to the 
different nxn multiplies, listed in the serial approach, are not possible in the parallel approach. The squaring optimisation, and also 
the modulo multiplication step, in general only execute half the limb multiplies that are required compared to a full nxn multiply. 
However, the longest limb within the nxn multiply dictates its overall execution time as all threads within a warp 
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must execute in lock step. Thus, although one thread only executes a single multiply, it must wait until the largest 1xn 
multiply finishes. Also, as each thread executes its own 1xn multiply separately, the cumulative approach to addition 
must also be separated from the multiplication process.  
 

C. Results 
Figure 3 illustrates the performance of both the parallel and serial approaches. All measurements represent the number 
of 1024-bit RSA decrypt primitives executed per second. The GPU implementations show their dependence on an 
increasing number of messages to approach their peak performance. This is due to having more threads available to hide 
memory read/write latency, and also an increased ratio of kernel work compared to the fixed overheads associated with 
data transfer and kernel calls. We can see the advantage of the parallel approach over the serial approach at lower 
primitives per kernel call due to an higher level of occupancy. However the performance bottlenecks of excessive 
synchronisations and lack of optimisations limit the parallel approach. Also included in Figure 3, is the fastest 
implementation reported on the Crypto++ [9] website for  
a 1024-bit RSA decrypt, which is running on an AMD Opteron 2.4 GHz processor. Also included are  
the performance measurements for Openssl’s [10] speed test for 1024-bit RSA decryption running in  
both single (SC) and dual core (DC) modes on an AMD Athlon 64 X2 Dual Core 3800+. As can be  
seen at peak performance, the serial approach on the GPU is almost 4 times the speed of the fastest  
CPU implementation at 5536.75 primitives per second. We can see that the serial approach becomes  
competitive with the fastest CPU implementation at 256 primitives per second. Unfortunately the parallel  
approach at no point is faster than both the serial GPU approach and the CPU implementations. 
 

III. MONTGOMERY EXPONENTIATION IN RNS ON THE GPU 
 
A. Single Precision Modular Multiplication on the GPU 
The most executed primitive operation within Montgomery RNS is a single precision modular mul- 
tiplication. On the Nvidia CUDA hardware series the integer operations are limited to 32-bit input  
and output. Integer multiplies are reported to take 16 cycles, where divides are not quoted in cycles  
but rather a recommendation to avoid if possible [1]. Here we present an investigation into 6 different  
techniques for achieving single precision modular multiplication suitable for RNS based exponentiation  
implementations.  
1. 32-bit Simple Long Division: given two 32-bit unsigned integers we use the native multiply operation and the  
umulhi(x,y) CUDA intrinsic to generate the low and high 32-bit parts of the product. We then use the product as a 4 16-bit 
limb dividend and divide by the 2 16-bit limb divisor using standard multi-precision division [7] to generate the remainder.  
2. 32-bit Division by Invariant Integers using Multiplication: we make the observation that  
the divisors within an RNS Montgomery implementation are static. Also, as we select the moduli, they  
can be chosen to be close to the word size of the GPU. Thus we can assume that all invariant divisors,  
within the context of our implementation, are normalised (i.e. they have their most significant bit set).  
These two observations allow us to use a simplified variant of Granlund and Montgomery’s approach for  
division by invariants using multiplication [11]. The basic concept used by [11] to calculate n/d is to find  
a sufficiently accurate approximation of 1/d in the form m/2x. Thus the division can be performed by the  
multiplication of n ∗ m and cheap byte manipulation for division. We pre-calculate m for each of the base  
residues used and transfer them to the GPU for use via texture lookups. The algorithm below removes  
all normalisation requirements from the original algorithm. It also rearranges some of the calculations to  
suit the efficient predication available on the GPU. Inputs: N is the word bit length on the GPU; single  
word multiplier and multiplicand x and y; m is a pre-calculated value dependent on d alone; d is the  
divisor. Output: r, the remainder.  

n = x ∗ y,n1 = hiword(n),n0 = loword(n) ns = n0 >> (N − 
1)  
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if(ns > 0) n0+ = d  
t = hiword((m ∗ (n1 + ns)) + n0)  
q1 = n1 + t  
dr = (n − (d << N )) + ((2N − 1 − q1) ∗ d) r = loword(dr) + 
(d & hiword(dr))  

3. 32-bit Reduction by Residue Multiplication: in this approach we use the observation that the moduli 
comprising the RNS bases can be selected close the GPU’s maximum single word value. For 1024-bit RSA we can 
determine that for all moduli, d, the following holds |2N|d < 211, where N is the word bit length of the GPU, i.e. 32. As 
such, given a single precision multiplication n = xy, and using the convention that n1 is the most signification word of 
n, and n0 the least significant word, we can rewrite n as |n1 ∗ 2N + n0|d. By repeatedly applying this representation to 
the most signification part of the equation, and using the pre-calculated value r = |2N |d, we can derive an algorithm for 
executing modular multiplication with multiplies and additions only. This observation is more formally stated as follows 
(left), and the resultant pseudocode is also listed (right).  

Observation: Pseudocode: 
|x ∗ y|d = |n|d n=x∗y 

= ||n1|d ∗ |2N |d + |n0|d|d n0 = loword(n),n1 = hiword(n) 
Let r = |2N |d /* r < 211*/ n1r = n1 ∗ r 
|n|d = ||n1|d ∗ r + |n0|d|d n1r0 = loword(n1r) 

= ||n1r|d + |n0|d|d /* n1r < 243*/ n1r1 = hiword(n1r) 
|n1r|d = ||n1r1|d ∗ r + |n1r0|d|d n1r1r = loword(n1r1 ∗ r) 

= ||n1r1r|d + |n1r0|d|d /* n1r1r < 222 */ r = n1r1r + n1r0 + n0 
Thus: if(r < d)r− = d 
|n|d ≡ |n1r1r|d + |n1r0|d + |n0|d, if(r < d)r− = d. 

which is < 3d.  
4. 32-bit Native Reduction using CRT: using a modulus with two co-prime factors p and q, we  
can represent the modular multiplication input values, x and y, as |x|p, |x|q, |y|p, |y|q. Thus we have a mini RNS 
representation and as such can multiply these independently. We use CRT to recombine to give the final product. As p 
and q can be 16-bit, we are able to use the GPU’s native integer modulus operator while maintaining 32-bit operands 
for our modular multiplication. This approach is described in more detail in the Moss et al. paper [12].  
5. 16-bit Native Reduction: we can use 16-bit integers as the basic operand size of our modular  
multiplication, both input and output. We can then simply use the GPU’s native multiply and modulus  
operators without any concern of overflow. However, we need to maintain the original dynamic range of  
the RNS bases when using 32-bit moduli. We can achieve this by doubling the number of moduli used  
in each base (note there is plenty of extra dynamic range when using 17 32-bit integers to accommodate  
this simple doubling).  
6. 12-bit Native Reduction: this is the same concept as the 16-bit native approach above, however  
using 12-bit input and outputs we can use the much faster floating point multiplies and modulus operators  
without overflow concerns. Again we need to maintain the dynamic range by approximately tripling the  
original 32-bit moduli. Also there is an issue where the Kawamura approximations require the base  
moduli to be within a certain range of the next power of 2. This is not discussed further here, though  
note that a full 12-bit implementation would require the use of another base extension method than the  
one described below.  
Results: All tests of the above approaches process 232 bytes, executing modular multiplication op- 
erations, reading and accumulating from and to shared memory. The results can be seen in Table 1. We  
can see that the 12-bit and 16-bit approaches show the best performance, however a correction step is  
required for these figures. As we will see, the base extension executes in O(n) time across n processors,  
where n is the number of moduli in the RNS base. In the context of 1024-bit RSA, the 12-bit approach  
requires a minimum of 43 moduli (512 bits / 12 bits) compared to 17 32-bit moduli for each RNS base.  
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Also, the base extension step in Montgomery RNS is the most intensive part of our implementations con- 
suming  80% of the execution time. A minimum approximation correction for the 12-bit result presented  
here is a division of 2, and for 16-bit 1.5. The most effective approach for use in Montgomery RNS is  
Reduction by Residue Multiplication.  

 
 
Modular Multiplication Approach Modular multiplications per second  

1. 32-bit LongDiv 2.89 * 109 

2. 32-bit Inverse Mul 3.63 * 109 

3. 32-bit Residue Mul 4.64 * 109 

4. 32-bit Native+CRT 1.12 * 109 

5. 16-bit Native 4.71 * 109 

6. 12-bit Native 7.99 * 109 

Table 1. GPU Modular Multiplication throughput using a variety of techniques 
 

IV. CONCLUSIONS 

We have focused on 1024-bit RSA decryption running on an Nvidia 8800 GTX and demonstrated a peak  
throughput of 0.18 ms/op giving a 4 times improvement over a comparable CPU implementation. We have  
shown that a standard serial implementation of Montgomery exponentiation gives the best performance  
in the context of a high number of parallel messages, while an RNS based Montgomery exponentiation  
gives better performance with fewer messages. We show that an optimised RNS approach proves better  
performance than a CPU implementation at 32 parallel ciphertext/plaintext messages per kernel call  
and the pencil-and-paper approach proves better than the RNS approach at 256 parallel messages. Also  
covered in the paper is the applicability of the GPU to general public key cryptography, where the  
observation is made that peak performance is only achievable in the context of substantial key reuse. In  
the case of 1024-bit RSA using RNS, peak performance requires the key to change at a maximum rate of  
once per 15 messages, and once per 32 messages when using a serial pencil-and-paper approach. We have  
also presented a variety of techniques for achieving efficient GPU based modular multiplication suitable  
for RNS.  
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