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Abstract: A simple and straightforward reduction procedure (which is somewhat different from Packham's [1] approach) is
employed here to find the linear solution for the normally incident incoming waves at the interface of two liquids where the
liquids are bounded on the left by a rigid vertical cliff. Analytical expressions for velocity potentials in each of the two liquids
are obtained here, assuming the lower liquid to be of uniform finite depth and the upper liquid to be of infinite height.
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I. INTRODUCTION

Problem of water waves on a beach which slopes at an angle /2n with the horizontal, n being any integer is an important
oceanic phenomenon. For n=1, i.e., when a vertical cliff exists on one side of the ocean, a sloping beach problem reduces to the
problem involving a vertical cliff. The solution of the corresponding two dimensional as well as three dimensional problems
involving a vertical cliff were obtained by Stoker [2,3], exploiting a powerful, though, complicated method essentially based on
the complex variable theory, for deep water case.

However, existing literature on problems involving two liquids are, in general, complicated because of the coupled boundary
conditions at the interface of the liquids. Since then, few attempts have been made to investigate this class of water wave
problems associated with Laplace's equation and few of its generalizations by employing different mathematical techniques (cf.
[4]-[8]). The present study is concerned with the two dimensional problem of incoming wave progressing towards a rigid
vertical cliff, in two immiscible liquid, where the lower liquid is of finite constant depth h and the upper liquid is of finite
constant height H. Allowing no reflection of waves by the cliff, the problem under consideration is attacked for solution,
assuming linear theory, by a simple reduction procedure and analytical expressions for the velocity potentials, in each of the
two liquid, are obtained. As a particular case, a known result for the problem involving a liquid of finite depth h is recovered

(cf. [6]).

Il. STATEMENT OF THE PROBLEM
Let us consider the two-dimensional irrotational motion of two inviscid, homogeneous liquid with densities p;and p,(p; > p5),
of the lower and upper liquid respectively, under the action of gravity. A rectangular Cartesian co-ordinate system is chosen in
which the y-axis is taken to be vertically downwards into the lower liquid, the plane y = 0,x > 0 is the mean position of the
interface, x = 0 is the rigid wall, and the two liquid of densities p;and p, occupy the regionsx >0, 0 <y <hand x>0,
—H < y < Orespectively. The origin is taken at a point on the line of intersection where the mean interface and the wall meet.

IH1.MATHEMATICAL FORMULATION OF THE PROBLEM
Let The problem is to find the velocity potentials ®;(x, y, t) with j = 1,2 (j = 1 for the lower liquid and j = 2 for the upper
liquid). For periodic motion, we can assume
@, (x,y,t) = Re[, (x,y) EXD(—iat)]}
@, (x,y,t) = Re[p,(x,y) exp(—iat)]
where & is the circular frequency.
The problem is to find ®,,®, which behave as x — o like progressive waves moving towards the cliff. Thus the problem

(3.)

under consideration can be investigated by way of determining the potentials ¢, (x,v), ¢, (x, y) which satisfy the boundary
value problems given below:
1) Two-dimensional Laplace's equations:
Vi, =0
W%=J (3.2)
in the respective flow domain, where V2 is the two dimensional Laplacian.
2) Linearised interface conditions:
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¢1y = ¢2y
ko, + ¢1y =S (k¢2 + ¢2y

where K = o2/ g is the wave number, g is the acceleration due to gravity and s = p,/p,
3) Conditions at the rigid bottom and top :

)} ony =0,x >0, (3.3)

¢1y =0ony=h
¢2y =0ony= H} (34)
4) Conditions on the rigid cliff x=0 :
$,=0,0<y<h
5. =0, —H Sy<0} (35)

Our purpose is to obtain ¢, ¢, satisfying (3.2) to (3.5) and the condition that they behave at infinity as progressive waves
moving towards the wall.
Further, as no reflection of waves, by the wall, is allowed which can be justified by assuming a source/sink type behavior in the
potential functions at the origin, in the absence of surface tension (cf. [9]), which lead to the conditions
¢1. P, o InT asr=(x2+y?)V2 0. (3.6)
Noting the conditions (3.3) and (3.4), and following Gorgui and Kassem [10], we can assume that
L 70052&(]‘: - Y) exp(—ikqx) )
cosh ky(H + y)

} as x — oo, (3.7)
27 sinh ko H

exp(—ikyx) J

IV. SOLUTION OF THE PROBLEM
To solve the problem, mathematically, we reduce the boundary value problem, described by (3.2) to (3.6) and the infinity
requirement given by (3.7), to another boundary value problem. To do this, let us introduce two new functions ¥, and y,of X, y
by the following relations:

2cosh ky(h —
= Mcos kox + 1, (x,y)

1™ sinhkyh
_2coshky(H +y) x4 (4.1)
2 = sinh ko H cos kox + 1, (x,y)
Where w,,w, satisfy the boundary value problems described by (3.2) to (3.6) together with the infinity requirement
coshky(h —
Lo —#exp(ikox) ]
sinhky h N 49
coshky(H +y) ] asx = (4.2)
————exp(ikyx)

27 " sinh ko H
It should be mentioned here that, as x — o, Y,,, defined by (4.1) represent outgoing wave, however, ¢,, ¢, represent
incoming wave, though ¥, 9, and ¢,, ¢, satisfy the same boundary value problems described by (3.2) to (3.6). Thus if ¥, 1,
are known, the time independent potential functions ¢,, ¢, can be derived by using (4.1).
Alternative representation for i, 1, satisfying (3.2) to (3.6), are given by

[oe]

_ coshk(h — y) sinh kH
Y, (x,y) = Cf 300 cos kx dk
’ (4.3)
_ cosh k(H + y) sinh kh
P, (x,y) = —Cf o) cos kx dk

0
Where A(k) = k(1-s)sinhkhsinhkH — K(cosh khsinhkH + scosh kH sinh kh) .
Here A(k) has a simple pole at k = k, > 0 (say), a simple pole at k = k' < 0 (say), and an infinite number of complex poles
with positive real part, of the form sé, =+ ik,, (cf. [8]). Here the contour is indented below the pole at k = k, to account for the
outgoing nature of 1,1, as x — oo, and c is a constant to be determined such that the conditions at infinity given by (4.2) are
satisfied. It can be easily shown that 1,, 1, given by (4.3) satisfy the interface conditions (3.3) and for small r they behave like
Inr (cf. [10]). It is to be noted here that in the absence of the upper liquid (i.e when s = 0), A(k) = 0 has a simple real root
ko = 0, and an infinite number of purely imaginary roots of the form *ik, (cf. [11]).
Y1, P, given by (4.3), may also be represented as follows :
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_ 2mic [g(ko)
=1 f(ko)

cosh k,(h — y) sinh kyH exp(ikyx) +Zf( )cosh y(h —y) sinh yH exp(iyx)

9@)
@

coshky(H + y) sinh koh exp(ikyx) + Z

=——coshy (h —y)sinhy Hexp(— Lyx)]

2mic [g(ky) @

_ /16%)
Y2 =1 7o)

f)
coshy (H + y) sinhy h exp(— Lyx)]

coshy(H + y) sinhyh exp(iyx)

9@
@
Where f(x) = sinh 2xh sinh?xH + 2xHsinh?xH + s sinh?xh sinh 2xH + 2sxH sinh?xh,
g(x) = coshxh sinh xH + s cosh xH sinh xh,
y=s&, +ik,, vy=s& —ik,, n=123 .. ...
Infinity requirements, given by (4.2), are satisfied by choosing
_i(@-s)D
- 2

(4.5)
where

-1
D= [msinh kyh sinh kOH] ZUsing (4.5) into (4.4), the functions

1 (ko)
Y, P, can be found, which are given by

_coshky(h—y)
1!’1(95,}’) = —W

+D Z ??/) coshy (h — y) sinh7H exp(—iyx)
coshko(H +y) gy (4.6)
Y, (x,y) = Wexp(lkox) +D Z cosh y(H + y) sinh yh exp(iyx)

exp(ikox) — D Z ?Ey; coshy(h — y) sinh yH exp(iyx)

—sz( )Coshy(H+y)5|nh 7h exp(—iyx)

Exploiting (4.6) into (4.1), the solutions ¢,, ¢», for the original boundary value problems described by (3.2) - (3.6) together with
conditions at infinity given by (3.7), are obtained, which are given by
coshky(h —y) 9@)
¢, (x,y) = Sinh koh ——————~exp(—ikyx) — DZ e )cosh y(h — y) sinhyH exp(iyx)
g?/; coshy (h — y) sinh7H exp(—iyx)
4.7)

coshky(H + ) ] ay)
Wexp(—lkox) +D %) =——coshy(H + y) sinh yh exp(iyx)

9@)

-D ) =——coshy (H + y)sinhyh exp(—iyx)

Making use of (4.7) into (3.1), the velocity potentials @, (x, y, t), ®,(x, y, t) have been found (see Appendix-I). The explicit
expressions for @, @, are given by

+D

b, (x,y) = -

cosh k,(h —
@, (x,y,t) = Wcos(kox + ot) — 2D sin atz u(k,) exp(—k,x)
0
coshky(H +y) _ (4.8)
D, (x,y,t) = ~srhkH 0s(koX + ot) + 2D sin atz v(k,) exp(—k, x)
0

@, O, represented by (4.8) are the velocity potentials for incoming water waves against a rigid vertical cliff in two immiscible
liquids.

V. SPECIAL CASE
As a special case, if we make the assumption s = 0 (which leads to one fluid medium), we find (see Appendix-11):

_ 2(2koh + sinh 2kyh) (k) = cosk,(h—y)cosk,h
T sinh2kh ) Y T T T @2k, h+sin 2k, k)
so that
cosh ky,(h — 4(2koh + sinh 2k, h) sin ot X\ cos k,, (h — y) cos k, h
@, (x,y,t) :Mcos(kox+ot) + (2K of)sing n(h =) “exp(—=k,x)  (5.1)

sinh kqh sinh 2kyh (2k, h +sin 2k, h)
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The above expression for @, (x,y, t) is the velocity potential for a two-dimensional progressive wave train moving towards a
rigid cliff in a single liquid of uniform finite depth "h'.
To check, if one assumes
coshky(h —y)
1> cinh b B
sinh ky h
cosh ky(h —y)
12 Gnhb B
sinhky h
In the calculations of Mandal and Kundu ([6]), the expression of &, (x, v, t), for a single liquid given by (5.1) can be recovered.

exp(—ikyx), instead of

exp(—ikyx) asx > o

VI.CONCLUSIONS
A relatively simple approach to find the solution of the two dimensional incoming waves at the interface of two superposed
liquids and progressing towards a rigid vertical cliff is demonstrated here. Assuming linear theory, the explicit expression for
the velocity potentials in each of the two liquid are obtained where the lower and upper liquids to be of finite depth and finite
height respectively. The major advantage of the method described in this work is that the solution of the corresponding problem
in the absence of upper liquid can be found simply by the substitution of s = 0. This problem is a simplified mathematical
model of the well known sloping beach problem arising in oceanography.

Appendix-I:

u(k ) — [H1X1Y2 + H2X1Y1 - HIXZYI + HZXZYZ] U(k ) — UIXIYZ +]2X1Y1 _]1X2Y1 +]2X2Y2]
" X2+ X2 ' " X? + X2 '

H, = (G, coss&,x — G, sinsé, x), H, = (G, sins&,x + G, c0S s&,,x),

J1 = (I, cossé,x — I, sinsé, x), J, = (I, sins&,x + I, cos s&,x),

Xi=A+B +(+ Dy, Y=E +F (i=12)

A =5 [PERM) — QS (1) — R, Ay = 5 [PUS() + QUDR() — (],

Bl = [P(H) - l]anh - Q(H)knhr BZ = [P(H) - l]knh+ Q(H)Sénh,

€y = SPUIR(H) = Q(WS(H) - RGD], €, = [PUISEH) + QUIR(H) — SN,

Dl = S[{P(h) - 1}anH - Q(h)an]r DZ = S[{P(h) - l}an + Q(h)anH],

E, =TV H) — UMW (H), E,=T(W®H) + Uh)V(H),

Fy = s[T(H)V (h) — UH)W (W], F, = s[T(HYW (h) + UH)V (R)],

G, =T(h —y)V(H) —U(h — y)W(H), G, =T(h—y)W(H) +U(h —y)V(H),

L =TH+y)V(h) —UH +y)W(h), L, =T(H+y)W(h) +UH + y)V(h),

P(x) = cosh 2sé,x cos 2k, x, Q(x) = sinh 2s¢, x sin 2k, x,

R(x) = sinh 2s&, x cos 2k, x, S(x) = cosh 2s&,xsin 2k, x,

T(x) = cosh s&,xcosk,x, U(x) = sinh s&, xsin k,,x,

V(x) = sinh s&,x cos k, x, W (x) = coshs&,xsink,x.

Appendix-Il: Upon substitution s = 0, we have
P(x) = cos 2k,x, Q(x) =R(x) =0, S(x) = sin2k,x, A; =0, A, = —sin?k,H sin 2k, h,
B, =0, B, = —2k,hsin’k,H, C,=C, =D, =D, =0, X; =0,X, = —(2k,h + sin 2k, h) sin?k, H
T(x) = cos kpx, Ulx)=V(x) =0, W (x) = sin k,x, E, =0, E, =coskphsink,H, F;=F,=0
Y; =0, Y,=cosk,hsink,H, G; =0, G, =cosk,(h—y)sink,H, H =0, H,=cosk,(h—y)sink,H,
f (ko) = (Rkoh + sinh 2kyh) sinhZkyH, g((ky) = cosh kyhsinkgH,
2(2kyh + sinh 2k, h) cosk,(h —y)cosk,h
D= - , u(ky,) = — - .
sinh 2kyh (2k,h + sin 2k, h)
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