Ijraset Journal For Research in Applied Science and Engineering Technology
Authors: Shoaib Pinjari, Vaishnavi Rambhapure, Vaishnavi Chaudhari
DOI Link: https://doi.org/10.22214/ijraset.2025.75696
Certificate: View Certificate
The development of the pharmaceuticals brought a revolution in human health. These pharmaceuticals would serve their intent only if they are free from impurities and are administered in an appropriate amount. To make drugs serve their purpose various chemical and instrumental methods were developed at regular intervals which are involved in the estimation of drugs. These pharmaceuticals may develop impurities at various stages of their development, transportation and storage which makes the pharmaceutical risky to be administered thus they must be detected and quantitated. For this analytical instrumentation and methods play an important role. This review highlights the role of the analytical instrumentation and the analytical methods in assessing the quality of the drugs. The review highlights a variety of analytical techniques such as titrimetric, chromatographic, spectroscopic, electrophoretic, and electrochemical and their corresponding methods that have been applied in the analysis of pharmaceuticals.
Pharmaceutical research integrates chemistry, pharmacology, microbiology, and biochemistry, fostering collaboration between chemists and biologists to discover new drugs. Drug development begins with designing active pharmaceutical ingredients (APIs) that show therapeutic potential, followed by safety, absorption, distribution, metabolism, and toxicity studies. Preclinical research includes in vitro and animal testing, while clinical trials (Phases 1–4) evaluate safety, efficacy, dosage, and long-term effects in humans before market approval.
Advances in asymmetric synthesis and chiral separation have enabled single-enantiomer drug development, with regulatory guidelines ensuring quality and safety. Pharmaceutical formulations rely on excipients for stability, dosage, and administration, with careful consideration of drug–excipient interactions. Analytical techniques are essential throughout development, from assessing drug stability, impurities, and dosage forms to pharmacokinetic studies of drugs and metabolites.
Key Analytical Methods:
Titrimetric Techniques: Used for drug and degradation product estimation; modern adaptations improve precision and efficiency.
Chromatographic Techniques:
Thin Layer Chromatography (TLC): Widely used for identifying impurities and separating components in bulk drugs; quantitative applications possible.
High Performance Thin Layer Chromatography (HPTLC): Advanced, rapid, and flexible, enabling simultaneous analysis of multiple samples and improved reliability.
Analytical techniques remain critical for quality assurance, drug characterization, impurity detection, and regulatory compliance, supporting safe and effective pharmaceutical development from discovery to post-marketing.
The main aim of the pharmaceutical drugs is to serve the human to make them free from potential illness or prevention of the disease. For the medicine to serve its intended purpose they should be free from impurity or other interference which might harm humans. This review is aimed at focusing the role of various analytical instruments in the assay of pharmaceuticals and giving a thorough literature survey of the instrumentation involved in pharmaceutical analysis. The review also highlights the advancement of the techniques beginning from the older titrimetric method and reaching the advanced hyphenated technique stages.
[1] Abdoljavadi, M., Masrournia, M., 2011. Clin. Biochem. 44 (Suppl.), S319.
[2] Agbaba, D., Radovic, A., Vladimirov, S., Zivanov-Stakic, D., 1996. J. Chromatogr. Sci. 34, 460–464.
[3] Ahmad, A.S., Rahman, N., Islam, F., 2004. J. Anal. Chem. 59, 119– 123.
[4] Ahmed, M., Manohara, Y.N., Ravi, M.C., 2012. Int. J. Chem. Technol. Res. 4, 337–345.
[5] Akseli, I., Mani, G.N., Cetinkaya, C., 2008. Int. J. Pharm. 360, 65– 76.
[6] Al Azzam, K.M., Saad, B., Tat, C.Y., Mat, I., Aboul-Enein, H.Y., 2011. J. Pharm. Biomed. Anal. 56, 937–943.
[7] Alarfaj, N., El-Tohamy, M., 2011. J. Chin. Chem. Soc. 58, 637–644. Al-Ghamdi, A.F., Hefnawy, M.M., 2012. Arab. J. Chem. 5, 383–389.
[8] Al-Odaini, N.A., Zakaria, M.P., Yaziz, M.I., Surif, S., Abdulghani, M., 2013. Int. J. Environ. Anal. Chem. 93, 245–264.
[9] AlOthman, Z.A., Siddiqui, M.R., Wabaidur, S.M., AlLohedan, H.A., Ali, M.S., Rafiquee, M.Z.A., 2013. Asian J. Chem. 25, 4563–4568.
[10] Alvarenga, L., Ferreira, D., Altekruse, D., Menezes, J.C., Lochmann, D., 2008. J. Pharm. Biomed. Anal. 48, 62–69.
[11] Amin, N.C., Blanchin, M.-D., Ake´ , M., Fabre, H., 2012. J. Pharm. Biomed. Anal. 58, 168–171.
[12] Andrade, L.S., Rocha-Filho, R.C., Cass, Q.B., Fatibello-Filho, O., 2010. Anal. Methods 2, 402–407.
[13] Ashour, A., Hegazy, M.A.M., Moustafa, A.A., Kelani, K.O., Abdel Fattah, L.E., 2009. Drug Test. Anal. 1, 327–338.
[14] Bali, A., Gaur, P., 2011. Chem. Central J. 5, 59. Basavaiah, K., Anil Kumar, U.R., 2007. Indian J Chem. Technol. 14, 200–203, 2007.
[15] Basavaiah, K., Prameela, H.C., 2003. IL Farmaco 58, 527–534.
[16] Bebawy, L.I., Moustafa, A.A., Abo-Talib, N.F., 2002. J. Pharm. Biomed Anal. 27, 779–793.
[17] Berset, J.D., Brenneisen, R., Mathieu, C., 2010. Chemosphere 81, 859–866.
[18] Blanco, M., Coello, J., Eustaquino, A., Iturriaga, H., Maspoch, S., de la Pezuela, C., 1996. Anal. Chim. Acta 333, 147–156. Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., de la Pezuela, C., 1998. Analyst 123, 135R–150R.
[19] Blanco, M., Coello, J., Eustaquio, A., Iturriaga, H., Maspoch, S., 1999. J. Pharm. Sci. 88, 551–556.
[20] Blanco, M., Eustaquio, A., Gonzalez, J.M., Serreno, D., 2000. J. Pharm. Biomed. Anal. 22, 139–148.
[21] Blasco, C., Pico´ , Y., Andreu, V., 2009. Electrophoresis 30, 698–707.
[22] Bouchonnet, S., Bourcier, S., Souissi, Y., Genty, C., Sablier, M., Roche, P., Boireau, Veronique, Valerie, Ingrand, 2012. J. Mass Spectrum. 47, 439–452.
[23] Breaud, A.R., Harlan, R., Kozak, M., Clarke, W., 2009. Clin. Biochem. 42, 1300–1307.
[24] Brezovska, M., Jampilek, J., Opatrilova, R., 2013. Curr. Pharm. Anal. 9, 69–76.
[25] Bryn, S.R., Xu, W., Newman, A., 2001. Adv. Drug Del. Rev. 48, 115– 136.
[26] Buchanan, B.R., Baxter, M.A., Chen, T.-S., Quin, X.-Z., Robinson, P.A., 1996. Pharm. Res. 13, 616–621.
[27] Calatayud, J.M., 1996. Flow Injection Analysis of Pharmaceuticals Automation in the Laboratory. Taylor & Fransis, London. Calatayud, J.M., Garcia Mateo, J.V., 1992a. Pharm. Technol. Int. 4, 17–24.
[28] Calatayud, J.M., Garcia Mateo, J.V., 1992b. Pharm. Technol. Int. 4, 30–40.
[29] Calatayud, J.M., Vives, S.S., Roche, F.S., 1990. Quim. Anal. 9, 1–31. Calcara, M., Enea, V., Pricoca, A., Miano, F., 2005. J. Pharm. Biomed. Anal. 38, 344–348.
[30] Cao, S., Liu, Z., Zhang, L., Xi, C., Li, X., Wang, G., Yuan, R., Mu, Z., 2013. Anal. Methods 5, 1016–1023.
[31] Chen, Y., Thosar, S.S., Shukla, R.A., Drug Dev, 2001. Ind. Pharm. 27, 623–631.
[32] Chennaiah, M., Veeraiah, T., Charan Singh, T., Venkateshwarlu, G., 2011. J. Chilean Chem. Soc. 56, 926–929.
[33] Chitturi, S.R., Somannavar, Y.S., Peruri, B.G., Nallapati, S., Sharma, H.K., Budidet, S.R., Handa, V.K., Vurimindi, H.B., 2011. J. Pharm. Biomed. Anal. 55, 31–47.
[34] Christian, G.D., 1992. Novel flow injection analysis systems for drug analysis. J. Pharm. Biomed. Anal. 10, 769–773. Chuan, D., Wen, Y., Shaomin, S., Pin, Y., 2000. Analyst 125, 1327– 1330.
[35] Cimpoiu, C., Hosu, A., Hodison, S., 2006. J. Pharm. Biomed. Anal. 41, 633–637.
[36] Corti, C., Ceramelli, G., Dreassi, E., Matti, S., 1999. Analyst 124, 755–758.
[37] Darwish, I.A., Sultan, M.A., Al-Arfaj, H.A., 2010. Spectrochim. Acta A Mol. Biomol. Spectrosc. 75, 334–339.
[38] D’Avolio, A., Simiele, M., Siccardi, M., Baietto, L., Sciandra, M., Bonora, S., Di Perri, G., 2010. J. Pharm. Biomed. Anal. 52, 774– 780.
[39] De Lima Gomes, P.C., Barletta, J.Y., Nazario, C.E., Santos-Neto, A.J., Von Wolff, M.A., Coneglian, C.M., Umbuzeiro, G.A., Lancas, F.M., 2011. J. Sep. Sci. 34, 436–445.
[40] De Souza, C.F., Martins, R.K., Da Silva, A.R., Da Cunha, A.L., Auce´ lio, R.Q., 2013. Spectrochim Acta A. Mol. Biomol. Spectrosc. 100, 51–58.
[41] Deconinck, E., Canfyn, M., Sacre´ , P.-Y., Baudewyns, S., Courselle, P., De Beer, J.O., 2012. J. Pharm. Biomed. Anal. 70, 64–70.
[42] Devi Manjula, A.S., Ravi, T.K., 2012. Int. J. Pharm. Tech. Res. 4, 576–581.
[43] Devika, G.S., Sudhakar, M., Rao, J.V., 2012. E-J. Chem. 9, 999– 1006.
[44] Ding, L., Huang, X., Yang, J., Bian, X., Zhang, Z., Liu, G., 2006. J. Pharm. Biomed. Anal. 40, 758–762.
[45] Drug discovery and Development, understanding the R&D process, 2007.
Copyright © 2025 Shoaib Pinjari, Vaishnavi Rambhapure, Vaishnavi Chaudhari . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Paper Id : IJRASET75696
Publish Date : 2025-11-21
ISSN : 2321-9653
Publisher Name : IJRASET
DOI Link : Click Here
Submit Paper Online
