Chalcone natural or synthetic and chalcone derivatives have exhibited different types of biological activities. Chalcone is widely available in nature and due to its broad spectrum of biological activities, this moiety is often used in molecular design strategies. In this article I have summarised literature evidence on biological activities of chalcone derivatives.
Introduction
The text provides a comprehensive review of chalcones, a class of naturally occurring compounds that serve as key precursors in flavonoid biosynthesis and possess wide-ranging biological and pharmacological activities. Chalcones are biosynthesized via the shikimate pathway and are structurally characterized as 1,3-diaryl propenones. Beyond their chemical importance, chalcones and their derivatives exhibit diverse bioactivities, including antibacterial, antileishmanial, antifungal, antiviral, anti-inflammatory, antimalarial, and antifilarial effects, as well as enzyme inhibition relevant to cellular metabolism.
The review highlights extensive antibacterial activity of chalcones, particularly oxygenated and lipophilic derivatives such as licochalcone A, which show strong bactericidal or bacteriostatic effects depending on substitution patterns. Structure–activity relationship (SAR) studies emphasize the role of lipophilicity, hydroxyl groups, and specific ring substitutions in determining potency. Chalcones also demonstrate notable antileishmanial activity by targeting parasite mitochondrial enzymes, leading to impaired respiration and parasite death.
Antifungal activity is mainly observed against dermatophytes, with electron-withdrawing substituents enhancing potency, while steric effects influence activity. Several chalcone derivatives exhibit antiviral properties, including inhibition of HIV replication, where methoxy substitutions play a critical role. Anti-inflammatory effects are attributed to the inhibition of nitric oxide and prostaglandin E? production through suppression of inducible nitric oxide synthase and cyclooxygenase-2 pathways.
Additionally, chalcones show antifilarial activity by inhibiting glutathione-S-transferase in parasites, resulting in reduced viability and parasite death. Overall, the text underscores the therapeutic potential of chalcones and their derivatives, demonstrating how structural modifications significantly influence biological activity and supporting their continued exploration as promising lead compounds in drug discovery.
Conclusion
This article has summarized different biological activities of natural and synthetic chalcone like anti-filarial, anti-inflammatory, antiviral, antileishmanial, antifungal and antibacterial activity. Their importance stems from this broad bioactivity and ease of synthesis are a driving force for researchers to synthesize new derivatives of chalcone for therapeutic applications. Researchers can modify the chalcone scaffold to develop potent drug candidate specially by incorporating heterocyclic ring (N,O,S) to enhance activity against specific disease targets.
References
[1] W. J. Lee, J. C. Lim, S. H. Paek, K. Song and J. Y. Chang, “New Photoreactive Materials having chalcone units: Synthesis and photoalignment of nematic liquid crystals,” Korea Polymer Journal, Vol. 9, pp. 339-344. 2001.
[2] M. Chen, L. Zhai, S. B. Christensen, G. Theander and A. Kharazmi, “Inhibition of Fumarate Reductase inLeishmania major and L. donovani by Chalcones”, Antimicrobial Agent and chemotherapy, Vol. 45, pp. 2023-2029, 2001.
[3] S. Sogawa, Y. Nihro, H. Ueda, T. Miki, H. Matsumoto and T. Satoh, “Protective effects of hydroxychalcones on free radical induced cell damage”, Biological and Pharmaceutical Bulletin., Vol. 17, pp. 251-256, 1994.
[4] S. Iwata, N. Nagata, A. Omae, S. Yamaguchi, Y. Okada, S. Shibata and T. Okuyama, “Inhibitory effect of chalcone derivatives on recombinant human aldose reductase” Biol. Pharm. Bull., Vol. 22, pp. 323-325, 1999.
[5] C. Morisseau, G. Du, T. W. Newman and B. D. Hammock, “Mechanism of mammalian soluble epoxide hydrolase inhibition by chalcone oxide derivatives”, Arch. Biochem. Biophys., 356(2), pp. 214-228, 1998.
[6] O. Nerya, R. Musa, S. Khatib, S. Tamir and J. Vaya, “Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers” Phytochemistry, Vol. 65, pp. 1389-1395, 2004.
[7] E. B. Yang, Y. J. Guo, K. Zhang, Y. Z. Chen and P. Mack, “Inhibition of epidermal growth factor receptor tyrosine kinase by chalcone derivatives”, Biochim. Biophys. Acta, Vol. 1550, pp. 144-152, 2001.
[8] C. L. Miranda, G. L. M. Aponso, J. F. Stevens, M. L. Deinzer and D. R. Buhler, “Prenylated chalcones and flavonones as inducers of quinone reductase in mouse Hepa 1c1c7 cells, Cancer Lett, Vol. 149, pp. 21-29, 2000
[9] R.-I Tsukiyama, H. Katsura, N. Tokuriki and M. Kobayashi, “Antibacterial activity of licochalcone A against spore forming bacteria”, Antimicrobial Agents and Chemotherapy, Vol. 46, pp. 1226-1230, 2002.
[10] A. Friis-Moller, M. Chen, K. Fuursted, S. B. Christensen and A. Kharazmi, “In vitro antimicrobial and antilegionella activity of licochalcone a from Chinese licorice roots, Planta Med. Vol . 68, pp. 416-419, 2002.
[11] T. Fukai, A. Marumo, K. Kaitou, T. Kanda, S. Terada and T. Nomura, “Anti-helicobacter pylori flavonoids from licorice extract”, Life Sci. Vol. 71, pp. 1449-1463, 2002.
[12] H. Kromann, M. Larsen, T. Boesen, K. Schønning and S. F. Nielsen, “Synthesis of prenylated benzaldehydes and their use in the synthesis of analogues of licochalcone A”, Eur. J. Med. Chem., 39, pp. 993-1000, 2004.
[13] H. Haraguchi, K. Tanimoto, T. Yukiyoshi, K. Mizutani and T. Kinoshita, “Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata”, Phytochemistry, Vol. 48, pp. 125-129, 1998.
[14] T. B. Machado, I. C. R. Leal, R. M. Kuster, A. C. F. Amaral, V. Kokis, M. G. de Silva and K. R. N. Santos, “Brazilian phytopharmaceuticals – evaluation against hospital bacteria”, Phytotherapy Research, Vol. 19, pp. 519-525, 2005.
[15] P. D. Bremner, and J. J. M. Meyer, “Pinocembrin chalcone: An antibacterial compound from helichrysum trilineatum, Planta Med., Vol. 64(8), pp. 777, 1998.
[16] G. Belofsky, D. Percivill, K. Lewis, G. P. Tegos and J. Ekart, “Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria, Journal of Natural Products, Vol. 67(3), pp. 481-484, 2004.
[17] S. F. Nielsen, T. Boesen, M. Larsen, K. Schønning, K. and H. Kromann, “Antibacterial chalcones-biososteric replacement of the 4?-hydroxyl group”, Bioorg.Med. Chem. Vol. 12, pp. 3047-3054, 2004.
[18] Y. M. Lin, Y. Zhou, M. T. Flavin, L. M. Zhou, W. Nie and F. C. Chen, “Chalcones and flavonoids as anti-Tuberculosis agents”, Bioorganice and Medicinal Chemistry, Vol. 10 (8), pp. 2795-2802, 2002.
[19] S. F. Nielsen, M. Chen, T. G. Theander, A. Kharazmi and S. B. Christensen, “Synthesis of antiparasitic licorice chalcones, Bioorg. Med. Chem. Lett. Vol 5, pp. 449-452, 1995.
[20] L. Zhai, M. Chen, J. Blom, T. G. Theander, S. B. Christensen and A. Kharazmi, “The antileishmanial activity of novel oxygenated chalcones and their mechanism of action, Journal of Antimicrobrial Chemotherapy,Vol. 43, pp. 793-803, 1999.
[21] E. C. Torres-Santos, D. L. Moreira, M. A. C. Kaplan, M. N. Meirelles and B. Rossi-Bergmann, “Selective Effect of 2?,6?-Dihydroxy-4?-Methoxychalcone Isolated from Piper aduncum on Leishmania amazonensis”, Antimicrobrial Agents and Chemotherapy, Vol. 43, pp. 1234-1241, 1999
[22] A. Hermoso, I. A. Jimenez, Z. A. Mamani, I. L. Bazzocchi, J. E. Pinero, A. G. Ravelo and B. Valladares, “Antileishmanial activities of dihydrochalcones from Piper elongatum and synthetic related compounds. Structural requirements for activity”, Bioorganic and Medicinal Chemistry. Vol. 11, pp. 3975-3980, 2003.
[23] S. F. Nielsen, A. Kharazmi and S. B. Christensen, “Modifications of the ?, ?-double bond in chalcones only marginally affect the antiprotozoal activities”, Bioorganic and Medicinal Chemistry, Vol. 6, pp. 937-945, 1998.
[24] S. Lopez, M. V. Castelli, S. Zacchino, J. N. Dominguez, G. Lobo, J. Charris-Charris, J. C. C. Coetrs, J. C. Ribas, C. Devia, A. M. Rodrigues and R. D. Enriz, “In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall”, Bioorganic and Medicinal Chemistry, Vol. 9, pp. 1999-2013, 2001.
[25] H. N. ElSohly, A. S. Joshi, A. C. Nimrod, L. A. Walker and A. M. Clark, “Antifungal chalcones from Maclura tinctoria”, PlantaMed., Vol. 67, pp. 87-89, 2001.
[26] L. Svetaz, A. Tapia, S. N. Lopez, R. L. E. Furlan, E. Petenatti, R. Pioli, G. Schmeda-Hirschmann and S. A. Zacchino, “Antifungal Chalcones and New Caffeic Acid Esters from Zuccagnia punctata Acting against Soybean Infecting Fungi”, Journal of Agriculture and Food Chemistry. Vol. 52, pp. 3297-3300, 2004
[27] J. C. Onyilagha, B. Malhotra, M. Elder, C. J. French and G. H. N. Towers, “Comparative studies of inhibitory activities of chalcones on tomato ringspot virus (ToRSV)”, Canadian Journal of Plant Pathology., Vol 19, pp. 133-137, 1997.
[28] B. Malhotra, J. C. Onyilagha, B. A. Bohm, G. H. N. Towers, D. James, J. B. Harborne and C. J. French, “Inhibition of tomato ringspot virus by flavonoids”, Phytochemistry, Vol. 43, pp. 1271-1276, 1996.
[29] Q. Wang, Z. H Ding, J. K. Liu and Y. T. Zheng, “Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus”, Antiviral Research, Vol. 64, pp. 189-194, 2004.
[30] J. H. Wu, X. H. Wang, Y. H. Yi and K. H. Lee, “Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos”, Bioorganic and Medicinal Chemistry Letters, Vol. 13, pp. 1813-1815, 2003.
[31] L. Mishra, H. Itokawa, K. F. Bastow, Y. Tachibana, Y. Nakanishi, N. Kilgore, K. H. Lee and R. Sinha, “Anti-HIV and cytotoxic activities of Ru (II)/Ru (III) polypyridyl complexes containing 2, 6-(2?-benzimidazolyl)-pyridine/chalcone as co-ligand”, Bioorganic and Medicinal Chemistry Letters, Vol. 9, pp. 1667-1671, 2001.
[32] H. X. Xu, M. Wan, H. Dong, P. But and L. Y. Foo, “Inhibitory activity of flavonoids and tannins against HIV-1 protease”, Biological and Pharmaceuitcal. Bulletin., Vol. 23, pp. 1072-1076, 2000.
[33] F. Herencia, M. L. Ferrandiz, A. Ubeda, J. N. Dominguez, J. E. Charris, G. M. Lobo and M. J. Alcaraz, “Synthesis and anti-inflammatory activity of chalcone derivatives”, Bioorganic and Medicinal Chemistry Letters, Vol. 8, pp. 1169-1174, 1998.
[34] F. Herencia, M. L. Ferrandiz, A. Ubeda, I. Guillen, J. N. Dominguez, J. E. Charris, G. M. Lobo and M. J. Alcaraz, “4-dimethylamino-3?,4?-dimethoxychalcone downregulates iNOS expression and exerts anti-inflammatory effects”, Free Radical Biology and Medicine, Vol. 30, pp. 43-50, 2001.
[35] F. Herencia, M. L. Ferrandiz, A. Ubeda, I. Guillen, J. N. Dominguez, J. E. Charris, G. M. Lobo and M. J. Alcaraz, “Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages”, FEBS Letters, Vol. 453, pp. 129-134, 1999.
[36] F. Herencia, M. P. Lopez-Garcia, A. Ubeda and M. L. Ferrandiz, “Nitric oxide-scavenging properties of some chalcone derivatives”, Nitric Oxide. Vol. 6(2), pp. 242-246, 2002.
[37] J. Rojas, M. Paya, J. N. Dominguez and M. L. Ferrandiz, “ttCH, A selective inhibitor of inducible nitric oxide synthase expression with antiarthritic properties”, European. Journal of Pharmocology, Vol. 465 (2), pp. 183-189, March 2003.
[38] J. Rojas, J. N. Dominguez, J. E. Charris, G. M. Lobo, M. Paya and M. L. Ferrandiz, “Synthesis and inhibitory activity of dimethylamino-chalcone derivatives on the induction of nitric oxide synthase”, European Journal of Medicinal Chemistry, Vol. 37(8), pp. 699-705, 2002.
[39] S. K. Awasthi, N. Mishra, S. K. Dixit, A. Singh, M. Yadav, S. S. Yadav and S. Rathaur, “Antifilarial activity of 1, 3-diarylpropen-1-one: effect on glutathione-S-transferase, a phase II detoxification enzyme”, American Journal of Tropical Medicine and Hygiene, Vol. 80(5), pp. 764-768, 2009.