Ijraset Journal For Research in Applied Science and Engineering Technology
Authors: Aditi Chauhan, Benjamin Soto
DOI Link: https://doi.org/10.22214/ijraset.2025.74720
Certificate: View Certificate
Functional magnetic resonance imaging has tipped the scales of neuroscience in its favor by allowing the noninvasive imaging of brain activity due to the blood-oxygen-level-dependent contrast. Despite this, BOLD fMRI remains limited due to its dependence on localized vascular activity in the brain rather than direct measures of neuronal activity. This introduces ambiguities in the interpretations of these signals. This study aims to investigate the tradeoffs between MRI and BOLD fMRI. Drawing on several peer-reviewed studies, this synthesis presents the current knowledge on contrast physics, the biological foundations of the BOLD signal, and its confounds. This paper also aims to reveal the limitations of BOLD, along with certain misapprehensions regarding the accuracy of its interpretations, and issues related to the variability of its signal, clinical translatability, and calibration techniques. To address the problems presented in BOLD’s signal validity, this paper proposes a new framework, Adaptive Vascular Calibration, which combines the technique of breath-hold cerebrovascular reactivity mapping with region-specific hemodynamic lag estimations to provide a solution for inter-individual variability and voxel-wise vascular variability (differences in vascular responsiveness across individual voxels in an MRI scan, which can cause variations in BOLD signal strength and timing) in BOLD responses. AVC differs from previous models in its aim to integrate vascular fingerprinting directly into preprocessing pipelines for both task-based and resting-state fMRI, which should enable individual-focused and physiologically accurate interpretations of signals. This proposal also represents a crucial step toward harmonizing BOLD’s complexity with the precision required in clinical settings and research.
MRI is a non-invasive imaging technique that provides detailed images of soft tissues without ionizing radiation, making it safer than other modalities. Since its inception in the 1970s, MRI has advanced significantly through improvements in coil design, pulse sequences, and magnetic field strength, enabling higher-resolution anatomical imaging.
Functional MRI (fMRI) and BOLD Contrast
A key development in MRI is functional MRI (fMRI), which measures brain activity using Blood-Oxygen-Level Dependent (BOLD) contrast. BOLD fMRI relies on the paramagnetic properties of deoxyhemoglobin: increased neural activity raises local blood flow, reduces deoxyhemoglobin, and alters T2* MRI signals. While BOLD provides an indirect measure of neuronal activity via vascular responses, it has limitations including imperfect spatial/temporal resolution, susceptibility to noise, and dependence on healthy vasculature.
Applications of BOLD fMRI
Over the past three decades, BOLD fMRI has been used in cognitive neuroscience, psychiatry, surgical planning, and resting-state network analysis. However, misconceptions remain, as BOLD signals reflect vascular changes rather than direct neuronal firing.
Historical Development
Structural MRI: Rooted in NMR principles, with T1 and T2 relaxation times distinguishing tissue types. Pioneers like Lauterbur and Mansfield enabled spatial encoding and fast imaging, leading to clinical adoption by the 1980s.
Functional Imaging Foundations: Early concepts of neurovascular coupling date back to Angelo Mosso (late 19th century). Diffusion MRI and DTI further revealed microstructural and connectivity information.
BOLD Discovery: In 1990, Seiji Ogawa demonstrated T2*-weighted signal changes linked to local deoxyhemoglobin, establishing the physiological basis for fMRI.
Early Human Studies: First human fMRI studies (1991–1992) mapped blood flow and BOLD signals during sensory and motor tasks, confirming reproducibility.
Technological Advances
Transition from 1.5T to 3T scanners improved signal-to-noise ratio (SNR), spatial resolution, and temporal resolution.
Ultra-high-field 7T scanners enhance sensitivity and microvascular detection but increase artifacts and safety concerns.
MRI Physics and Contrast Mechanisms
T1-weighted: Highlights tissue differences based on longitudinal magnetization recovery; excellent for anatomy.
T2-weighted: Sensitive to water content; useful for edema, lesions, and inflammation.
T2-weighted:* Accounts for magnetic susceptibility inhomogeneities; basis of BOLD fMRI.
Gradient-echo sequences maximize BOLD sensitivity; spin-echo improves spatial specificity but reduces signal.
Biological Basis of BOLD
Neurovascular Coupling (NVC): Neural activity triggers astrocytes, neurons, and pericytes to modulate local blood flow.
Hemodynamic Response Function (HRF): BOLD signal follows a characteristic time course (~10 s), including initial dip, peak, and post-stimulus undershoot.
HRF variability exists across individuals due to age, disease, genetics, and metabolism.
fMRI Interpretation Considerations
BOLD is an indirect measure of neuronal activity, more strongly correlated with synaptic input (local field potentials) than spiking activity.
Temporal resolution is limited by HRF; spatial specificity can be biased by large vessels.
Technical, physiological, and biological factors (noise, motion, vascular health) must be accounted for in study design and data analysis.
In brief, BOLD fMRI has revolutionized imaging and comprehension of the working human brain. Its emergence was a paradigm shift in the science of neuroscience, giving indirect access to the dynamic processes of neural systems underpinning cognition, behavior, and disease. And yet, despite all the revolutionary promise, BOLD is an inference technique: based upon the nuances of blood flow, oxygenation, and vascular physiology rather than direct measurement of neural activity. As the present paper has made evident, the virtues of BOLD imaging - spatial resolution, functional mapping properties, and accessibility - are inextricably bound up with its vices: compromised temporal accuracy, interindividual variability, and physiological ambiguity. The BOLD fMRI and conventional structural MRI contrast illustrates an inherent compromise between anatomical resolution and functional insight. Structural MRI provides the physical map; BOLD fMRI tries to overlay that map with meaning. When the meaning is, however, tainted with neurovascular noise or oversimplified to a one-size-fits-all hemodynamic model, the scientific and clinical utility of BOLD fMRI is undermined. This study has introduced a novel solution, Adaptive Vascular Calibration (AVC), to address this problem at its root. Through the use of real-time physiological perturbation modeling of the vascular response of individual subjects, AVC enables subject-specific calibration of the BOLD signal that respects the individual dynamics of every brain. We are aware of no other technique existing today that involves regional, voxel-level vascular calibration followed by resulting consequent functional imaging data recalibration. With this, AVC promises a future of neuroimaging that is more precise, more subject-specific, and more clinically significant.
[1] Addeh, A., Williams, R. J., Golestani, A., Pike, G. B., & MacDonald, M. E. (2025). Physiological confounds in BOLD-fMRI and their correction. NMR in Biomedicine, 38(7), e70076. https://doi.org/10.1002/nbm.70076 [2] Ahmed, S., & Hassan, F. F. (2023). Optimizing imaging resolution in brain MRI: Understanding the impact of technical factors. Journal of Medicine and Life, 16(6), 920–924. https://doi.org/10.25122/jml-2022-0212 [3] Al-Arfaj, H. K., Al-Sharydah, A. M., Al-Suhibani, S. S., Alaqeel, S., & Yousry, T. (2023). Task-based and resting-state functional MRI in observing eloquent cerebral areas personalized for epilepsy and surgical oncology patients: A review of the current evidence. Journal of Personalized Medicine, 13(2), 370. https://doi.org/10.3390/jpm13020370 [4] American Society of Functional Neuroradiology. (2025). BOLD. https://www.asfnr.org/what-is-bold-fmri [5] Bandettini, P. A. (2012). Twenty years of functional MRI: The science and the stories. NeuroImage, 62(2), 575–588. https://doi.org/10.1016/j.neuroimage.2012.04.026 [6] Bandettini, P. A., Huber, L., & Finn, E. S. (2021). Challenges and opportunities of mesoscopic brain mapping with fMRI. Current Opinion in Behavioral Sciences, 40, 189–200. https://doi.org/10.1016/j.cobeha.2021.06.002 [7] Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25(2), 390–397. https://doi.org/10.1002/mrm.1910250220 [8] Bashir, U. (2020). Gradient echo sequences. Radiopaedia. https://radiopaedia.org/articles/gradient-echo-sequences-1 [9] Bashir, U. (2021, May 2). T2 relaxation. Radiopaedia. https://radiopaedia.org/articles/t2-relaxation [10] Baumann, S., Griffiths, T. D., Rees, A., Hunter, D., Sun, L., & Thiele, A. (2010). Characterisation of the BOLD response time course at different levels of the auditory pathway in non-human primates. NeuroImage, 50(3), 1099–1108. https://doi.org/10.1016/j.neuroimage.2009.12.103 [11] Belliveau, J., Kennedy, D., McKinstry, R., Buchbinder, B., Weisskoff, R., Cohen, M., Vevea, J., Brady, T., & Rosen, B. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032), 716–719. https://doi.org/10.1126/science.1948051 [12] BenSalem, A., & Knipe, H. (2023). Intravoxel incoherent motion. Radiopaedia. https://doi.org/10.53347/rid-179694 [13] Buckner, R. L. (1998). Event?related fMRI and the hemodynamic response. Human Brain Mapping, 6(5-6), 373. https://doi.org/10.1002/(SICI)1097-0193(1998)6:5/6<373::AID-HBM8>3.0.CO;2-P [14] Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., & Chaarani, B. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43–54. https://doi.org/10.1016/j.dcn.2018.03.001 [15] Chaudhry, A. A., Naim, S., Gul, M., Chaudhry, A., Chen, M., Jandial, R., & Badie, B. (2019). Utility of preoperative blood-oxygen-level-dependent functional MR imaging in patients with a central nervous system neoplasm. Radiologic Clinics of North America, 57(6), 1189–1198. https://doi.org/10.1016/j.rcl.2019.07.006 [16] Chavhan, G. B., Babyn, P. S., Thomas, B., Shroff, M. M., & Haacke, E. M. (2009). Principles, techniques, and applications of T2*-based MR imaging and its special applications. RadioGraphics, 29(5), 1433–1449. https://doi.org/10.1148/rg.295095034 [17] Chen, J., & Chang, C. (2023). Advances in resting-state functional MRI. Elsevier. [18] Chen, J., Yu, K., Bi, Y., Ji, X., & Zhang, D. (2024). Strategic integration: A cross-disciplinary review of the fNIRS-EEG dual-modality imaging system for delivering multimodal neuroimaging to applications. Brain Sciences, 14(10), 1022. https://doi.org/10.3390/brainsci14101022 [19] Chiou, K. S., & Hillary, F. G. (2010). Methodological considerations for using bold fMRI in the clinical neurosciences. In Springer eBooks (pp. 103–116). https://doi.org/10.1007/978-1-4419-6373-4_8 [20] Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C., & Taylor, P. A. (2017). FMRI clustering in AFNI: False-positive rates redux. Brain Connectivity, 7(3), 152–171. https://doi.org/10.1089/brain.2016.0475 [21] D\'Esposito, M., Deouell, L. Y., & Gazzaley, A. (2003). Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging. Nature Reviews Neuroscience, 4(11), 863–872. https://doi.org/10.1038/nrn1246 [22] Detre, J. A., & Wang, J. (2002). Technical aspects and utility of fMRI using BOLD and ASL. Clinical Neurophysiology, 113(5), 621–634. https://doi.org/10.1016/s1388-2457(02)00038-x [23] DeYoe, E. A., & Raut, R. V. (2014). Visual mapping using blood oxygen level dependent functional magnetic resonance imaging. Neuroimaging Clinics of North America, 24(4), 573–584. https://doi.org/10.1016/j.nic.2014.08.001 [24] Drew, P. J. (2019). Vascular and neural basis of the BOLD signal. Current Opinion in Neurobiology, 58, 61–69. https://doi.org/10.1016/j.conb.2019.06.004 [25] Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 113(28), 7900–7905. https://doi.org/10.1073/pnas.1602413113 [26] Ekstrom, A. (2010). How and when the fMRI BOLD signal relates to underlying neural activity: The danger in dissociation. Brain Research Reviews, 62(2), 233–244. https://doi.org/10.1016/j.brainresrev.2009.12.004 [27] Europe PMC. (2016). Europe PMC. https://europepmc.org/article/PMC/332863 [28] Farahani, K., Sinha, U., Sinha, S., Chiu, L. C., & Lufkin, R. B. (1990). Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Computerized Medical Imaging and Graphics, 14(6), 409–413. https://doi.org/10.1016/0895-6111(90)90040-i [29] Fazal, Z., Llera, A., Marques, F., Beck, T., Poser, B. A., & Norris, D. G. (2022). A comparison of multiband and multiband multiecho gradient?echo EPI for task fMRI at 3 T. Human Brain Mapping, 44(1), 82–93. https://doi.org/10.1002/hbm.2608 [30] Fernández-Seara, M. A., Rodgers, Z. B., Englund, E. K., & Wehrli, F. W. (2016). Calibrated bold fMRI with an optimized ASL-BOLD dual-acquisition sequence. NeuroImage, 142, 474–482. https://doi.org/10.1016/j.neuroimage.2016.08.00 [31] Fleury, M., Figueiredo, P., Vourvopoulos, A., & Lécuyer, A. (2023). Two is better? Combining EEG and fMRI for BCI and neurofeedback: A systematic review. Journal of Neural Engineering, 20(5). https://doi.org/10.1088/1741-2552/ad06e1 [32] Gaillard, F. (2012). MRI sequences (overview). Radiopaedia. https://radiopaedia.org/articles/mri-sequences-overview [33] Gaeta, M., Galletta, K., Cavallaro, M., Mormina, E., Cannizzaro, M. T., D\'Angelo, T., Blandino, A., Vinci, S. L., & Granata, F. (2024). T1 relaxation: Chemo-physical fundamentals of magnetic resonance imaging and clinical applications. Insights into Imaging, 15(1). https://doi.org/10.1186/s13244-024-01744-2 [34] Gautama, T., Mandic, D. P., & Van Hulle, M. M. (2003). Signal nonlinearity in fMRI: A comparison between BOLD and MION. IEEE Transactions on Medical Imaging, 22(5), 636–644. https://doi.org/10.1109/tmi.2003.812248 [35] Gauthier, C. J., & Fan, A. P. (2019). BOLD signal physiology: Models and applications. NeuroImage, 187, 116–127. https://doi.org/10.1016/j.neuroimage.2018.03.018 [36] Gupta, K., Gupta, R., Mittal, P., & Ahluwalia, A. (2014). Role of GRE imaging in cerebral diseases with hemorrhage: A case series. Journal of Mahatma Gandhi Institute of Medical Sciences, 19(2), 159. https://doi.org/10.4103/0971-9903.138445 [37] Hall, C. N., Howarth, C., Kurth-Nelson, Z., & Mishra, A. (2016). Interpreting BOLD: Towards a dialogue between cognitive and cellular neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1705), 20150348. https://doi.org/10.1098/rstb.2015.0348 [38] Harita, S., Ioachim, G., Powers, J., & Stroman, P. W. (2019). Investigation of resting-state BOLD networks in the human brainstem and spinal cord. Neuroscience, 404, 71–81. https://doi.org/10.1016/j.neuroscience.2019.02.009 [39] Harris, J. J., Reynell, C., & Attwell, D. (2011). The physiology of developmental changes in BOLD functional imaging signals. Developmental Cognitive Neuroscience, 1(3), 199–216. https://doi.org/10.1016/j.dcn.2011.04.001 [40] Hayes, G., Sparks, S., Bulte, D. P., & Pinto, J. (2025). Models of cerebrovascular reactivity in BOLD-fMRI and transcranial Doppler ultrasound. Journal of Applied Physiology. https://doi.org/10.1152/japplphysiol.00107.2025 [41] Hill, P. F., Seger, S. E., Yoo, H. B., King, D. R., Wang, D. X., Lega, B. C., & Rugg, M. D. (2021). Distinct neurophysiological correlates of the fMRI BOLD signal in the hippocampus and neocortex. The Journal of Neuroscience, 41(29), 6343–6352. https://doi.org/10.1523/jneurosci.0278-21.2021 [42] History of MRI • Magnetic Resonance in Medicine -- The Basics -- by Peter A. Rinck | NMR MR MRI | Essentials, introduction, basic principles, facts, history | The primer of EMRF/TRTF. (2016). Magnetic-Resonance.org. https://magnetic-resonance.org/ch/20-04.html [43] Howarth, C., Mishra, A., & Hall, C. N. (2020). More than just summed neuronal activity: How multiple cell types shape the BOLD response. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1815), 20190630. https://doi.org/10.1098/rstb.2019.0630 [44] Iranpour, J., Morrot, G., Claise, B., Jean, B., & Bonny, J.-M. (2015). Using high spatial resolution to improve BOLD fMRI detection at 3T. PLOS ONE, 10(11), e0141358. https://doi.org/10.1371/journal.pone.0141358 [45] Jahng, G.-H., Park, S., Ryu, C.-W., & Cho, Z.-H. (2020). Magnetic resonance imaging: Historical overview, technical developments, and clinical applications. Progress in Medical Physics, 31(3), 35–53. https://doi.org/10.14316/pmp.2020.31.3.35 [46] Kabasawa, H. (2021). MR imaging in the 21st century: Technical innovation over the first two decades. Magnetic Resonance in Medical Sciences, 21(1). https://doi.org/10.2463/mrms.rev.2021-0011 [47] Klemm, K., & Martens, E. A. (2023). Bifurcations in adaptive vascular networks: Towards model calibration. arXiv. https://arxiv.org/abs/2305.19401 [48] Klink, P. C., Aubry, J.-F., Ferrera, V. P., Fox, A. S., Froudist-Walsh, S., Jarraya, B., Konofagou, E. E., Krauzlis, R. J., Messinger, A., Mitchell, A. S., Ortiz-Rios, M., Oya, H., Roberts, A. C., Roe, A. W., Rushworth, M. F. S., Sallet, J., Schmid, M. C., Schroeder, C. E., Tasserie, J., & Tsao, D. Y. (2021). Combining brain perturbation and neuroimaging in non-human primates. NeuroImage, 235, 118017. https://doi.org/10.1016/j.neuroimage.2021.118017 [49] Kumar, V. A., Lee, J., Liu, H., Allen, J. W., Filippi, C. G., Holodny, A. I., Hsu, K., Jain, R., McAndrews, M. P., Peck, K. K., Shah, G., Shimony, J. S., Singh, S., Zeineh, M., Tanabe, J., Vachha, B., Vossough, A., Welker, K., Whitlow, C., & Wintermark, M. (2024). Recommended resting-state fMRI acquisition and preprocessing steps for preoperative mapping of language and motor and visual areas in adult and pediatric patients with brain tumors and epilepsy. AJNR American Journal of Neuroradiology, 45(2), 139–148. https://doi.org/10.3174/ajnr.A8067 [50] Kupis, L., Goodman, Z. T., Kornfeld, S., Hoang, S., Romero, C., Dirks, B., Dehoney, J., Chang, C., Spreng, R. N., Nomi, J. S., & Uddin, L. Q. (2021). Brain dynamics underlying cognitive flexibility across the lifespan. Cerebral Cortex, 31(11), 5263–5274. https://doi.org/10.1093/cercor/bhab156 [51] Kwong, K. K. (2012). Record of a single fMRI experiment in May of 1991. NeuroImage, 62(2), 610–612. https://doi.org/10.1016/j.neuroimage.2011.07.089 [52] Le Bihan, D., & Iima, M. (2015). Diffusion magnetic resonance imaging: What water tells us about biological tissues. PLOS Biology, 13(7), e1002203. https://doi.org/10.1371/journal.pbio.1002203 [53] Lieber, K. (2024, May 20). The history of the MRI: The development of medical resonance imaging. Midwestern Career College. https://mccollege.edu/aas-in-magnetic-resonance-imaging-mri-technology/about-the-mri-technology-career/the-history-of-the-mri-development-of-medical-resonance-imaging/ [54] Liu, C.-S. J., Miki, A., Hulvershorn, J., Bloy, L., Gualtieri, E. E., Liu, G. T., Leigh, J. S., Haselgrove, J. C., & Elliott, M. A. (2006). Spatial and temporal characteristics of physiological noise in fMRI at 3T. Academic Radiology, 13(3), 313–323. https://doi.org/10.1016/j.acra.2005.10.018 [55] Liu, P., Xu, C., Lin, Z., Sur, S., Li, Y., Yasar, S., Rosenberg, P., Albert, M., & Lu, H. (2020). Cerebrovascular reactivity mapping using intermittent breath modulation. NeuroImage, 215, 116787. https://doi.org/10.1016/j.neuroimage.2020.116787 [56] Liu, T. T. (2016). Noise contributions to the fMRI signal: An overview. NeuroImage, 143, 141–151. https://doi.org/10.1016/j.neuroimage.2016.09.008 [57] Liu, T. T., Nalci, A., & Falahpour, M. (2017). The global signal in fMRI: Nuisance or information? NeuroImage, 150, 213–229. https://doi.org/10.1016/j.neuroimage.2017.02.036 [58] Logothetis, N. K., & Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast mechanism. Magnetic Resonance Imaging, 22(10), 1517–1531. https://doi.org/10.1016/j.mri.2004.10.018 [59] Madore, B., Hess, A. T., Hoinkiss, D. C., Hucker, P., Zaitsev, M., Afacan, O., & Günther, M. (2022). External hardware and sensors, for improved MRI. Journal of Magnetic Resonance Imaging, 57(3), 690–705. https://doi.org/10.1002/jmri.28472 [60] Magnetic-Resonance.org. (n.d.). Signal-to-Noise Ratio (SNR) in MRI | Factors affecting SNR. Mrimaster. https://mrimaster.com/snr/ [61] Magnetic-Resonance.org. (n.d.). TR and TE in MRI | TR (repetition time),TE (echo time) and image contrast. Mrimaster. https://mrimaster.com/tr-and-te-in-mri/ [62] Miller, K. L. (2012). FMRI using balanced steady-state free precession (SSFP). NeuroImage, 62(2), 713–719. https://doi.org/10.1016/j.neuroimage.2011.10.040 [63] Morcom, A. M., & Fletcher, P. C. (2007). Does the brain have a baseline? Why we should be resisting a rest. NeuroImage, 37(4), 1073–1082. https://doi.org/10.1016/j.neuroimage.2006.09.013 [64] MRIMaster. (n.d.). Blood-oxygen-level dependent - An overview. ScienceDirect Topics. https://www.sciencedirect.com/topics/neuroscience/blood-oxygen-level-dependent [65] Muetzel, R. L. (2024). Enhancing consistency in brain imaging research for population neuroimaging. Nature Protocols. https://doi.org/10.1038/s41596-024-01117-5 [66] National Institute of Biomedical Imaging and Bioengineering. (2025). Magnetic resonance imaging (MRI). https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri [67] Noll, D., & Vazquez, A. (n.d.). Temporal BOLD characteristics and non-linearity. https://web.eecs.umich.edu/~dnoll/nonlin.pdf [68] Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences, 89(13), 5951–5955. https://doi.org/10.1073/pnas.89.13.5951 [69] Okano, H. (2019). Dr. Seiji Ogawa and the past, present, and future of functional MRI research. The Keio Journal of Medicine, 68(4), 71–72. https://doi.org/10.2302/kjm.68-4_editorial [70] Pais-Roldán, P., Yun, S. D., & Shah, N. J. (2022). Pre-processing of sub-millimeter GE-BOLD fMRI data for laminar applications. Frontiers in Neuroimaging, 1. https://doi.org/10.3389/fnimg.2022.869454 [71] Perthen, J. E., Lansing, A. E., Liau, J., Liu, T. T., & Buxton, R. B. (2008). Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: A calibrated BOLD fMRI study. NeuroImage, 40(1), 237–247. https://doi.org/10.1016/j.neuroimage.2007.10.049 [72] Pillai, J. J. (2010). The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. American Journal of Neuroradiology, 31(2), 219–225. https://doi.org/10.3174/ajnr.a1845 [73] Raichle, M. E. (2009). A paradigm shift in functional brain imaging. Journal of Neuroscience, 29(41), 12729–12734. https://doi.org/10.1523/jneurosci.4366-09.2009 [74] Rashid, M., Singh, H., & Goyal, V. (2020). The use of machine learning and deep learning algorithms in functional magnetic resonance imaging—A systematic review. Expert Systems, 37(6). https://doi.org/10.1111/exsy.12644 [75] Rua, C., Costagli, M., Symms, M. R., Biagi, L., Donatelli, G., Cosottini, M., Del Guerra, A., & Tosetti, M. (2017). Characterization of high-resolution gradient echo and spin echo EPI for fMRI in the human visual cortex at 7 T. Magnetic Resonance Imaging, 40, 98–108. https://doi.org/10.1016/j.mri.2017.04.008 [76] Sample fMRI block design analysis using SPM. (2025). University of South Carolina. https://people.cas.sc.edu/rorden/tutorial/html/blockspm.html [77] Schapiro, M. B., Schmithorst, V. J., Wilke, M., Byars, A. W., Strawsburg, R. H., & Holland, S. K. (2004). BOLD fMRI signal increases with age in selected brain regions in children. NeuroReport, 15(17), 2575–2578. https://doi.org/10.1097/00001756-200412030-00003 [78] Scheef, L., & Boecker, H. (2012). Functional and structural MRI: Theoretical background and practical aspects. In Functional neuroimaging in exercise and sport sciences (pp. 269–317). https://doi.org/10.1007/978-1-4614-3293-7_12 [79] Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E., & Miller, K. L. (2019). Estimation of brain age delta from brain imaging. NeuroImage, 200, 528–539. https://doi.org/10.1016/j.neuroimage.2019.06.017 [80] Song, R., Min, J., Wang, S., Goodale, S. E., Rogge-Obando, K., Yang, R., Yoo, H. J., Nashiro, K., Chen, J. E., Mather, M., & Chang, C. (2025). The physiological component of the BOLD signal: Impact of age and heart rate variability biofeedback training. bioRxiv. https://doi.org/10.1101/2025.04.04.647252 [81] Specht, K. (2020). Current challenges in translational and clinical fMRI and future directions. Frontiers in Psychiatry, 10(924). https://doi.org/10.3389/fpsyt.2019.00924 [82] Tae, W.-S., Ham, B.-J., Pyun, S.-B., & Kim, B.-J. (2025). Current clinical applications of structural MRI in neurological disorders. Journal of Clinical Neurology, 21(4), 277. https://doi.org/10.3988/jcn.2025.0185 [83] Tang, M. Y., Chen, T. W., Zhang, X. M., & Huang, X. H. (2014). GRE T2*-weighted MRI: Principles and clinical applications. BioMed Research International, 2014, 1–12. https://doi.org/10.1155/2014/312142 [84] Turner, R. (2016). Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1705), 20150349. https://doi.org/10.1098/rstb.2015.0349 [85] UFO Themes. (2017, March 13). Special considerations/technical limitations of blood-oxygen-level-dependent functional magnetic resonance imaging. Radiology Key. https://radiologykey.com/special-considerationstechnical-limitations-of-blood-oxygen-level-dependent-functional-magnetic-resonance-imaging/ [86] U?urbil, K. (2012). Development of functional imaging in the human brain (fMRI); the University of Minnesota experience. NeuroImage, 62(2), 613–619. https://doi.org/10.1016/j.neuroimage.2012.01.135 [87] Uluda?, K. (2023). Physiological modeling of the BOLD signal and implications for effective connectivity: A primer. NeuroImage, 277, 120249. https://doi.org/10.1016/j.neuroimage.2023.120249 [88] Vachha, B., & Huang, S. Y. (2021). MRI with ultrahigh field strength and high-performance gradients: Challenges and opportunities for clinical neuroimaging at 7 T and beyond. European Radiology Experimental, 5(1). https://doi.org/10.1186/s41747-021-00216-2 [89] Viard, A., Eustache, F., & Segobin, S. (2021). History of magnetic resonance imaging: A trip down memory lane. Neuroscience, 474. https://doi.org/10.1016/j.neuroscience.2021.06.038 [90] Vinci, P. (2015). Integration of multimodal neuroimaging methods: A rationale for clinical applications of simultaneous EEG-fMRI. Functional Neurology. https://doi.org/10.11138/fneur/2015.30.1.00 [91] Welvaert, M., & Rosseel, Y. (2013). On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLOS ONE, 8(11), e77089. https://doi.org/10.1371/journal.pone.0077089 [92] Wolf, R. L., & Ware, J. B. (2021). Cerebrovascular reactivity mapping made simpler: A pragmatic approach for the clinic and laboratory. Radiology, 299(2), 426–427. https://doi.org/10.1148/radiol.2021210165 [93] XUE, G., CHEN, C., LU, Z.-L., & DONG, Q. (2010). Brain imaging techniques and their applications in decision-making research. Acta Psychologica Sinica, 42(1), 120–137. https://doi.org/10.3724/sp.j.1041.2010.00120 [94] Yang, L., Zhao, W., Kan, Y., Ren, C., & Ji, X. (2024). From mechanisms to medicine: Neurovascular coupling in the diagnosis and treatment of cerebrovascular disorders: A narrative review. Cells, 14(1), 16. https://doi.org/10.3390/cells14010016 [95] Yang, Z., Mishra, A., Wang, F., Chen, L. M., & Gore, J. C. (2025). Layer-specific BOLD effects in gradient and spin-echo acquisitions in somatosensory cortex. Magnetic Resonance in Medicine, 93(3), 1314–1328. https://doi.org/10.1002/mrm.3032 [96] Ye?ilyurt, B., U?urbil, K., & Uluda?, K. (2008). Dynamics and nonlinearities of the BOLD response at very short stimulus durations. Magnetic Resonance Imaging, 26(7), 853–862. https://doi.org/10.1016/j.mri.2008.01.008 [97] Zhang, Y.-D., Dong, Z., Wang, S.-H., Yu, X., Yao, X., Zhou, Q., Hu, H., Li, M., Jiménez-Mesa, C., Ramirez, J., Martinez, F. J., & Gorriz, J. M. (2020). Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. Information Fusion, 64, 149–187. https://doi.org/10.1016/j.inffus.2020.07.00 [98] Zhao, L. S., Raithel, C. U., Tisdall, M. D., Detre, J. A., & Gottfried, J. A. (2024). Leveraging multi-echo EPI to enhance BOLD sensitivity in task-based olfactory fMRI. Imaging Neuroscience. https://doi.org/10.1162/imag_a_00362 [99] Akbari, S., Pirzadeh, A., Farivarnia, F., Rajab, A., & Shaw, I. (2020). Magnetic resonance imaging for detection of musculoskeletal disorders: A literature review. Journal of Pain Management, 13(1), 15-18. [100] Who Really Invented the MRI Machine?. https://www.sigfox.us/2021/01/who-really-invented-mri-machine.html [101] Kuss, D., & Griffiths, M. (2012). Internet and gaming addiction: A systematic literature review of neuroimaging studies. https://doi.org/10.3390/brainsci2030347\\ [102] Sholook, M., Gilbert, J. S., Sedeek, M., Huang, M., Hester, R. L., & Granger, J. P. (2007). Systemic hemodynamic and regional blood flow changes in response to chronic reductions in uterine perfusion pressure in pregnant rats. American Journal of Physiology-Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.00667.2007 [103] Martuzzi, R., Murray, M., Meuli, R., Thiran, J., Maeder, P., Michel, C., De Peralta Menendez, R., & Andino, S. (2007). Frequency-Dependent Correlation Between Estimated LFPs and BOLD Responses in Human. https://core.ac.uk/download/77167538.pdf [104] Yoo, S., & Lee, K. M. (2013). Articulation-based sound perception in verbal repetition: A functional NIRS study. Frontiers in Human Neuroscience, (), n/a. [105] Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging. — Oxford Neuroscience. https://www.neuroscience.ox.ac.uk/publications/241279 [106] Monti, D., Faezeh, V., Zabrecky, G., Alizadeh, M., Wintering, N., Bazzan, A. J., Mohamed, F. B., & Newberg, A. B. (2024). Changes in Resting-State Functional Connectivity and Cognitive-Affective Symptoms in Patients With Post-Concussion Syndrome Treated With N-Acetyl Cysteine. Journal of Head Trauma Rehabilitation. https://doi.org/10.1097/htr.0000000000000976 [107] ISMRM24 - Pitch: Cutting-Edge Phantoms & Multimodal Imaging. https://www.ismrm.org/24/pf/PP-21.htm [108] \"The Adolescent Brain Cognitive Development (ABCD) study: Imaging acqui\" by Deanna M. Barch, Michael P. Harms et al.. https://digitalcommons.wustl.edu/open_access_pubs/6972/ [109] \"The Adolescent Brain Cognitive Development (ABCD) study: Imaging acqui\" by Deanna M. Barch, Michael P. Harms et al.. https://digitalcommons.wustl.edu/open_access_pubs/6972/ [110] Muller, C., Prampart, T., Bannier, E., Corouge, I., & Maurel, P. (2025). Evaluating the effects of multimodal EEG-fNIRS neurofeedback for motor imagery: An experimental platform and study protocol. PLoS One, 20(9), e0331177. [111] Martuzzi, R., Murray, M., Meuli, R., Thiran, J., Maeder, P., Michel, C., De Peralta Menendez, R., & Andino, S. (2007). Frequency-Dependent Correlation Between Estimated LFPs and BOLD Responses in Human. https://core.ac.uk/download/77167538.pdf
Copyright © 2025 Aditi Chauhan, Benjamin Soto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Paper Id : IJRASET74720
Publish Date : 2025-10-20
ISSN : 2321-9653
Publisher Name : IJRASET
DOI Link : Click Here
Submit Paper Online
