In conclusion, deploying a DeepFace-based video surveillance system shows a notable improvement in real-time security for
locations that are prone to crime. The suggested technique improves the detection and identification of known criminals with high
accuracy by utilizing deep learning for facial recognition. This system addresses the latency and reliability issues of traditional
surveillance by maintaining high
processing rates and providing timely alerts with down-sampling techniques and a face tracking scoring mechanism. All things
considered, this approach offers to improve public safety by proactively preventing events and providing law enforcement and
security workers in crucial, high-risk situations with reliability
References
M. Adil, S. Mamoon, A. Zakir, M. A. Manzoor, and Z. Lian, ‘‘Surveillance System for Real- Time High-Precision Recognition of Criminal Face from Wild
Videos” Hyun-Bin Kim, Nakhoon Choi, Hye-Jeong Kwon, and Heeyoul Kim in Proc. IEEE Access, vol. 2023, 10.1109/ACCESS.2023.3282451.
[2] Y. Zhu, H. Cai, S. Zhang, C. Wang, and Y. Xiong, “TinaFace: Strong but simple baseline for face detection,” 2020, arXiv:2011.13183.
[3] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: Deep hypersphere embeddings for face recognition,” in Proc. IEEE Conf. Com put. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 6738-6746.
[4] M. Alansari, O. A. Hay, S. Javed, A. Shoufan, Y. Zweiri, and N. Werghi, “GhostFaceNets: Lightweight face recognition model from cheap operations,”
IEEE Access, vol. 11, pp.35429-35446, 2023, doi:10.1109/ACCESS.2023.3266068.
[5] N. A. Abdullah, M. J. Saidi, N. H. A. Rahman, C. C. Wen, and I. R. A. Hamid, ‘‘Face recognition for criminal identification: An implementation of principal
component analysis for face recognition,” in Proc. AIP Conf., 2017, Art. No. 020002.
[6] K. B. Kwan-Loo, J. C. Ortíz-Bayliss, S. E. Conant-Pablos, H. Terashima Marín and P. Rad, “Detection of violent behavior using neural networks and pose
estimation,” IEEE Access, vol.10, pp. 86339- 86352, 2022.
[7] M.Adil, S. Mamoon, A. Zakir, M. A. Manzoor, and Z. Lian, ‘‘Multi scale adaptive super- resolution person re-identification using GAN,” IEEE Access, vol. 8,
pp. 177351-177362, 2020.
[8] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, ‘‘A discriminative feature learning approach for deep face recognition,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2016, pp. 499–515.
[9] C. Ferrari, S. Berretti, and A. Del Bimbo, ‘‘Extended YouTube faces: A dataset for heterogeneous open-set face identification,’’ in Proc. 24th Int. Conf. Pattern
Recognit. (ICPR), Aug. 2018, pp. 3408-3413.
[10] N. Wojke, A. Bewley, and D. Paulus, ‘‘Simple online and realtime tracking with a Deep association metric,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2017, pp. 3645–3649.
[11] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified embed ding for Face recognition and clustering,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 815–823.
[12] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, ‘‘ArcFace: Additive angular margin loss for deepface recognition,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 4685–4694.
[13] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, ‘‘CosFace: Large margin cosine loss for deep face recognition,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5265–5274.
[14] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, ‘‘Deformable convolutional networks,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct.
2017, pp. 764–773.
[15] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, ‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944.
[16] V. Tsakanikas and T. Dagiuklas, ‘‘Video surveillance systems-current status and future trends,’’ Comput. Electr. Eng., vol. 70, pp. 736 753, Aug. 2018.
[17] J. T. Pickett, C. Mancini, and D. P. Mears, ‘‘Vulnerable victims, mo