Ijraset Journal For Research in Applied Science and Engineering Technology
Authors: Saalah Yakubu Saalah, Hauwa Adam Alfaki, Aliyu Hassan Muhammad, Abdulsalam Mala Yakubu, Umar Jiddum Jidda, Abba Jato Ibrahim, Ishaq Iliyas, Khalli Nasir Othman
DOI Link: https://doi.org/10.22214/ijraset.2026.77409
Certificate: View Certificate
The paper examines the occurrence of Staphylococcus species and Staphylococcus aureus and Staphylococcus epidermidis on door and toilet handles within the Faculty of Life Sciences, University of Maiduguri. Sterile swabs were used to collect 20 samples with office and toilet handles and analyze them by means of microbiological and biochemical analyses. The findings showed that there was high contamination with S. aureus and S. epidermidis as the overwhelming isolates. The resistance to penicillin and oxacillin was high based on the antibiotic susceptibility tests with the high efficacy of linezolid and vancomycin towards these isolates. The results bring to the fore the possibility of such surfaces as reservoirs of antimicrobial-resistant pathogens, which can be dangerous to the population. The paper highlights the significance of rigorous sanitation, frequent disinfection and effective infection c2ontrol in the learning institutions. The findings also support the use of antibiotic stewardship programs to monitor the trend of resistance and encourage the use of antibiotics.
Staphylococcus species are Gram-positive, catalase-positive, non-motile cocci commonly found as normal flora on human and animal skin, mucous membranes, and environmental surfaces. Although often harmless, they are opportunistic pathogens capable of causing a wide range of infections in humans and animals, including skin infections, food poisoning, toxic shock syndrome, endocarditis, septicemia, osteomyelitis, mastitis in dairy animals, and arthritis in poultry.
A major public health concern is Methicillin-Resistant Staphylococcus aureus (MRSA), a strain resistant to beta-lactam antibiotics such as penicillins and cephalosporins. Resistance is largely due to the mecA gene, which alters bacterial cell wall targets and renders many antibiotics ineffective. Over time, Staphylococcus spp. have developed resistance to multiple antibiotics, including penicillin, methicillin, tetracycline, and erythromycin. Vancomycin has been used as a last-resort treatment, but vancomycin-intermediate and resistant strains have also emerged. MRSA spreads primarily through direct contact and contaminated surfaces (fomites), particularly in healthcare settings.
The genus Staphylococcus includes coagulase-positive species (CoPS), such as S. aureus, which are more pathogenic, and coagulase-negative species (CoNS), such as S. epidermidis and S. haemolyticus, which are significant causes of hospital-acquired infections. Identification methods include selective media (e.g., Mannitol Salt Agar) and advanced tools such as MALDI-TOF mass spectrometry.
Virulence factors contribute significantly to pathogenicity. These include surface proteins (MSCRAMMs) that promote adhesion, extracellular enzymes (proteases, lipases, hyaluronidases), toxins (hemolysins, leukotoxins, exfoliative toxins, enterotoxins, and TSST-1), and immune evasion mechanisms such as SCIN and CHIPS that inhibit complement activation and neutrophil chemotaxis. Toxins like Panton-Valentine leukocidin (PVL) are associated with severe skin infections and necrotizing pneumonia.
The study specifically addresses the public health risk posed by antibiotic-resistant Staphylococcus spp. on frequently touched surfaces such as door and toilet handles in academic settings. It aims to determine the presence and antibiotic susceptibility of Staphylococcus isolates in the Faculty of Life Sciences, University of Maiduguri. The findings are intended to raise awareness, improve hygiene practices, guide infection control policies, and reduce the spread of multidrug-resistant strains in the community.
The research involved the examination of the occurrence of staphylococcus species and their susceptibility to antibiotics on staff door and toilet handles. The findings revealed that both surfaces had Staphylococcus aureus and Staphylococcus epidermidis, with S. aureus being more prevalent. Staphylococcus aureus was the most common bacteria isolate. Both species were very resistant to penicillin and oxacillin. They were however vulnerable to levofloxacin, linezolid and vancomycin. The results suggest the necessity of better hygiene practices and antibiotic stewardship.
[1] Abdulgader, S. M., Shittu, A. O., Nicol, M. P., & Kaba, M. (2015). Molecular epidemiology of Methicillin-resistant Staphylococcus aureus in Africa: A systematic review. Frontiers in Microbiology, 6, 348. https://doi.org/10.3389/fmicb.2015.00348 [2] Agostino, J. W., Ferguson, J. K., Eastwood, K., & Kirk, M. D. (2017). The increasing importance of community?acquired methicillin?resistant Staphylococcus aureus infections. Medical Journal of Australia, 207(9), 388–393. [3] Aires-de-Sousa, M. (2017). Methicillin-resistant Staphylococcus aureus among animals: Current overview. Clinical Microbiology and Infection, 23(6), 373–380. https://doi.org/10.1016/j.cmi.2016.11.002 [4] Akinrotoye, K. P., Bankole, M. O., Akinduti, P. A., & Lanlokun, O. A. (2019). Antibiotic resistance profiles of Staphylococcus aureus isolated from fomites in community schools within Abeokuta environs leading to detection of MRSA. Bioscience Methods, 10. [5] Al-Abdli, N. E., & Baiu, S. H. (2016). Isolation of MRSA strains from hospital environment in Benghazi city, Libya. American Journal of Infectious Diseases and Microbiology, 4(2), 41–43. [6] Almeida, S. T., Nunes, S., Paulo, A. C. S., Faria, N. A., de Lencastre, H., & Sá-Leão, R. (2015). Prevalence, risk factors, and epidemiology of methicillin-resistant Staphylococcus aureus carried by adults over 60 years of age. European Journal of Clinical Microbiology & Infectious Diseases, 34(3), 593–600. https://doi.org/10.1007/s10096-014-2267-8 [7] Altunbulakli, C., Reiger, M., Neumann, A. U., Garzorz-Stark, N., Fleming, M., Huelpuesch, C., & Traidl-Hoffmann, C. (2018). Relations between epidermal barrier dysregulation and Staphylococcus species–dominated microbiome dysbiosis in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology, 142(5), 1643–1647. https://doi.org/10.1016/j.jaci.2018.07.005 [8] Bhatta, D. R., Hamal, D., Shrestha, R., Hosuru Subramanya, S., Baral, N., Singh, R. K., & Gokhale, S. (2018). Bacterial contamination of frequently touched objects in a tertiary care hospital of Pokhara, Nepal: How safe are our hands? Antimicrobial Resistance & Infection Control, 7(1), 1–6. https://doi.org/10.1186/s13756-018-0293-5 [9] Carolus, H., Van Dyck, K., & Van Dijck, P. (2019). Candida albicans and Staphylococcus species: A threatening twosome. Frontiers in Microbiology, 10, 2162. https://doi.org/10.3389/fmicb.2019.02162 [10] Challagundla, L., Luo, X., Tickler, I. A., Didelot, X., Coleman, D. C., Shore, A. C., & Robinson, D. A. (2018). Range expansion and the origin of USA300 North American epidemic methicillin-resistant Staphylococcus aureus. MBio, 9(1), e02016-17. https://doi.org/10.1128/mBio.02016-17 [11] Chen, C. J., & Huang, Y. C. (2014). New epidemiology of Staphylococcus aureus infection in Asia. Clinical Microbiology and Infection, 20(7), 605–623. https://doi.org/10.1111/1469-0691.12705 [12] Colin, M., Klingelschmitt, F., Charpentier, É., Josse, J., Kanagaratnam, L., De Champs, C., & Gangloff, S. C. (2018). Copper alloy touch surfaces in healthcare facilities: An effective solution to prevent bacterial spreading. Materials, 11(12), 2479. https://doi.org/10.3390/ma11122479 [13] Egea, A. L., Gagetti, P., Lamberghini, R., Faccone, D., Lucero, C., Vindel, A., & Sola, C. (2014). New patterns of methicillin-resistant Staphylococcus aureus (MRSA) clones, community-associated MRSA genotypes behave like healthcare-associated MRSA genotypes within hospitals, Argentina. International Journal of Medical Microbiology, 304(8), 1086–1099. https://doi.org/10.1016/j.ijmm.2014.08.002 [14] Fan, R., Li, D., Wang, Y., He, T., Feßler, A. T., Schwarz, S., & Wu, C. (2016). Presence of the optrA gene in methicillin-resistant Staphylococcus sciuri of porcine origin. Antimicrobial Agents and Chemotherapy, 60(12), 7200–7205. https://doi.org/10.1128/AAC.01591-16 [15] Grema, H. A., Geidam, Y. A., Gadzama, G. B., Ameh, J. A., & Suleiman, A. (2015). Methicillin resistant Staphylococcus aureus (MRSA): A review. Advances in Animal and Veterinary Sciences, 3(2), 79–98. [16] Guo, D., Liu, Y., Han, C., Chen, Z., & Ye, X. (2018). Phenotypic and molecular characteristics of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolated from pigs: Implication for livestock-association markers and vaccine strategies. Infection and Drug Resistance, 11, 1299–1307. https://doi.org/10.2147/IDR.S175499 [17] Hamdy, R. F., Hsu, A. J., Stockmann, C., Olson, J. A., Bryan, M., Hersh, A. L., & Gerber, J. S. (2017). Epidemiology of methicillin-resistant Staphylococcus aureus bacteremia in children. Pediatrics, 139(6), e20170183. https://doi.org/10.1542/peds.2017-0183 [18] Hammuel, C., Jatau, E. D., & Whong, C. M. (2014). Prevalence and antibiogram pattern of some nosocomial pathogens isolated from Hospital Environment in Zaria, Nigeria. Aceh International Journal of Science and Technology, 3(3), 131–139. [19] Harkins, C. P., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., & Holden, M. T. (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biology, 18(1), 1–11. https://doi.org/10.1186/s13059-017-1252-9 [20] Huh, K., & Chung, D. R. (2016). Changing epidemiology of community-associated methicillin-resistant Staphylococcus aureus in the Asia-Pacific region. *Expert Review of Anti-Infective Therapy, 14*(11), 1007–1022. https://doi.org/10.1080/14787210.2016.1236684 [21] Jia, Y., Niu, C. T., Xu, X., Zheng, F. Y., Liu, C. F., Wang, J. J., & Li, Q. (2021). Metabolic potential of microbial community and distribution mechanism of Staphylococcus spp. during broad bean paste fermentation. Food Research International, 148, 110533. https://doi.org/10.1016/j.foodres.2021.110533 [22] Junnila, J., Hirvioja, T., Rintala, E., Auranen, K., Rantakokko-Jalava, K., Silvola, J., & Vuopio, J. (2020). Changing epidemiology of methicillin-resistant Staphylococcus aureus in a low endemicity area—new challenges for MRSA control. European Journal of Clinical Microbiology & Infectious Diseases, 39(12), 2299–2307. https://doi.org/10.1007/s10096-020-03978-6 [23] Kale, P., & Dhawan, B. (2016). The changing face of community-acquired methicillin-resistant Staphylococcus aureus. Indian Journal of Medical Microbiology, 34(3), 275–285. https://doi.org/10.4103/0255-0857.188313 [24] Kuntaman, K., Hadi, U., Setiawan, F., Koendori, E. B., Rusli, M., Santosaningsih, D., & Verbrugh, H. A. (2016). Prevalence of methicillin resistant Staphylococcus aureus from nose and throat of patients on admission to medical wards of DR Soetomo Hospital, Surabaya, Indonesia. Southeast Asian Journal of Tropical Medicine and Public Health, 47(1), 66–70. [25] Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4), e00020-18. https://doi.org/10.1128/CMR.00020-18 [26] Lazarus, G., & Audrey, J. (2019). Comprehensive assessment of risk factors associated with methicillin-resistant Staphylococcus aureus (MRSA) infection in Asia: A systematic review. Journal of Asian Medical Students\' Association, 7(1). [27] Lee, A. S., De Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4(1), 1–23. https://doi.org/10.1038/nrdp.2018.33 [28] Li, H., Andersen, P. S., Stegger, M., Sieber, R. N., Ingmer, H., Staubrand, N., & Leisner, J. J. (2019). Antimicrobial resistance and virulence gene profiles of methicillin-resistant and -susceptible Staphylococcus aureus from food products in Denmark. Frontiers in Microbiology, 10, 268. https://doi.org/10.3389/fmicb.2019.00268 [29] Lim, W. W., Wu, P., Bond, H. S., Wong, J. Y., Ni, K., Seto, W. H., & Cowling, B. J. (2019). Determinants of methicillin-resistant Staphylococcus aureus (MRSA) prevalence in the Asia-Pacific region: A systematic review and meta-analysis. Journal of Global Antimicrobial Resistance, 16, 17–27. https://doi.org/10.1016/j.jgar.2018.08.014 [30] Madsen, A. M., Moslehi-Jenabian, S., Islam, M. Z., Frankel, M., Spilak, M., & Frederiksen, M. W. (2018). Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants. Environmental Research, 160, 282–291. https://doi.org/10.1016/j.envres.2017.10.001 [31] Moller, A. G., Lindsay, J. A., & Read, T. D. (2019). Determinants of phage host range in Staphylococcus species. Applied and Environmental Microbiology, 85(11), e00209-19. https://doi.org/10.1128/AEM.00209-19 [32] Moodley, A., Damborg, P., & Nielsen, S. S. (2014). Antimicrobial resistance in methicillin susceptible and methicillin resistant Staphylococcus pseudintermedius of canine origin: Literature review from 1980 to 2013. Veterinary Microbiology, 171(3–4), 337–341. https://doi.org/10.1016/j.vetmic.2014.02.008 [33] Moon, D. C., Jeong, S. K., Hyun, B. H., & Lim, S. K. (2019). Prevalence and characteristics of methicillin-resistant Staphylococcus aureus isolates in pigs and pig farmers in Korea. Foodborne Pathogens and Disease, 16(4), 256–261. https://doi.org/10.1089/fpd.2018.2526 [34] Narvaez?Bravo, C., Toufeer, M., Weese, S. J., Diarra, M. S., Deckert, A. E., Reid?Smith, R., & Aslam, M. (2016). Prevalence of methicillin?resistant Staphylococcus aureus in Canadian commercial pork processing plants. Journal of Applied Microbiology, 120(3), 770–780. https://doi.org/10.1111/jam.13029 [35] Nelson, R. E., Slayton, R. B., Stevens, V. W., Jones, M. M., Khader, K., Rubin, M. A., & Samore, M. H. (2017). Attributable mortality of healthcare-associated infections due to multidrug-resistant gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infection Control & Hospital Epidemiology, 38(7), 848–856. https://doi.org/10.1017/ice.2017.83 [36] Nurjadi, D., Fleck, R., Lindner, A., Schäfer, J., Gertler, M., Mueller, A., & Stich, A. (2019). Import of community-associated, methicillin-resistant Staphylococcus aureus to Europe through skin and soft-tissue infection in intercontinental travellers, 2011–2016. Clinical Microbiology and Infection, 25(6), 739–746. https://doi.org/10.1016/j.cmi.2018.10.006 [37] Peng, H., Liu, D., Ma, Y., & Gao, W. (2018). Comparison of community- and healthcare- associated methicillin-resistant Staphylococcus aureus isolates at a Chinese tertiary hospital, 2012–2017. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-21506-7 [38] Popovich, K. J., Green, S. J., Okamoto, K., Rhee, Y., Hayden, M. K., Schoeny, M., & Weinstein, R. A. (2021). MRSA transmission in intensive care units: Genomic analysis of patients, their environments, and healthcare workers. Clinical Infectious Diseases, 72(11), 1879–1887. https://doi.org/10.1093/cid/ciaa731 [39] Roberts, M. C., & No, D. B. (2014). Environment surface sampling in 33 Washington State fire stations for methicillin-resistant and methicillin-susceptible Staphylococcus aureus. American Journal of Infection Control, 42(6), 591–596. https://doi.org/10.1016/j.ajic.2014.02.003 [40] Rowe, S. E., Wagner, N. J., Li, L., Beam, J. E., Wilkinson, A. D., Radlinski, L. C., & Conlon, B. P. (2020). Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nature Microbiology, 5(2), 282–290. https://doi.org/10.1038/s41564-019-0627-y [41] Safdari, H., Aryan, E., Sadeghian, H., Shams, S. F., & Aganj, M. (2020). Frequency of methicillin-resistant Staphylococcus aureus (MRSA) in nose and cellular phone of medical and non-medical personnel of emergency departments of Ghaem hospital in Mashhad city. Clinical Epidemiology and Global Health, 8(4), 1043–1046. https://doi.org/10.1016/j.cegh.2020.03.020 [42] Schaumburg, F., Köck, R., Leendertz, F. H., & Becker, K. (2016). Airport door handles and the global spread of antimicrobial-resistant bacteria: A cross-sectional study. Clinical Microbiology and Infection, 22(12), 1010–1011. https://doi.org/10.1016/j.cmi.2016.08.014 [43] Sit, P. S., Teh, C. S. J., Idris, N., Sam, I., Syed Omar, S. F., Sulaiman, H., & Ponnampalavanar, S. (2017). Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection and the molecular characteristics of MRSA bacteraemia over a two-year period in a tertiary teaching hospital in Malaysia. BMC Infectious Diseases, 17(1), 1–14. https://doi.org/10.1186/s12879-017-2384-y [44] Stegger, M., Wirth, T., Andersen, P. S., Skov, R. L., De Grassi, A., Simões, P. M., & Laurent, F. (2014). Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus. MBio, 5(5), e01044-14. https://doi.org/10.1128/mBio.01044-14 [45] Szabó, J. (2014). Molecular methods in epidemiology of Methicillin resistant Staphylococcus aureus (MRSA): Advantages, disadvantages of different techniques. Journal of Medical Microbiology & Diagnosis, 3(3), 1. [46] Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., & Fowler, V. G. (2019). Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nature Reviews Microbiology, 17(4), 203–218. https://doi.org/10.1038/s41579-018-0147-4 [47] Uhlemann, A. C., Otto, M., Lowy, F. D., & DeLeo, F. R. (2014). Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus. Infection, Genetics and Evolution, 21, 563–574. https://doi.org/10.1016/j.meegid.2013.04.030 [48] Wang, H. K., Huang, C. Y., & Huang, Y. C. (2017). Clinical features and molecular characteristics of childhood community-associated methicillin-resistant Staphylococcus aureus infection in a medical center in northern Taiwan, 2012. BMC Infectious Diseases, 17(1), 1–6. https://doi.org/10.1186/s12879-016-2116-8 [49] Wong, J. W., Ip, M., Tang, A., Wei, V. W., Wong, S. Y., Riley, S., & Kwok, K. O. (2018). Prevalence and risk factors of community-associated methicillin-resistant Staphylococcus aureus carriage in Asia-Pacific region from 2000 to 2016: A systematic review and meta- analysis. Clinical Epidemiology, 10, 1489–1501. https://doi.org/10.2147/CLEP.S174513 [50] Ye, X., Wang, X., Fan, Y., Peng, Y., Li, L., Li, S., & Chen, S. (2016). Genotypic and phenotypic markers of livestock-associated methicillin-resistant Staphylococcus aureus CC9 in humans. Applied and Environmental Microbiology, 82(13), 3892–3899. https://doi.org/10.1128/AEM.00091-16 [51] Yu, C. H., Shen, S., Huang, K. Y. A., & Huang, Y. C. (2021). The trend of environmental and clinical methicillin-resistant Staphylococcus aureus in a hospital in Taiwan: Impact of USA300. Journal of Microbiology, Immunology and Infection, 54(5), 865–872. https://doi.org/10.1016/j.jmii.2020.08.014
Copyright © 2026 Saalah Yakubu Saalah, Hauwa Adam Alfaki, Aliyu Hassan Muhammad, Abdulsalam Mala Yakubu, Umar Jiddum Jidda, Abba Jato Ibrahim, Ishaq Iliyas, Khalli Nasir Othman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Paper Id : IJRASET77409
Publish Date : 2026-02-10
ISSN : 2321-9653
Publisher Name : IJRASET
DOI Link : Click Here
Submit Paper Online
