Ijraset Journal For Research in Applied Science and Engineering Technology
Authors: Sandhyaa K, Dr. K. Nora Vigasini
DOI Link: https://doi.org/10.22214/ijraset.2025.71916
Certificate: View Certificate
Antioxidants are essential in combating oxidative stress and supporting overall health. This study investigates the in vitro antioxidant potential of soups prepared using Moringa oleifera flowers, leaves, and pods by analyzing their nutrient composition, phytochemical content, and antioxidant activity to evaluate their functional food potential. Two soup variations were formulated with different proportions: Variation 1 contained 10 g of flowers, 5g of leaves, and 15 g of pods (10:5:15),while Variation 2 consisted of 15 g of flowers, 5 g of leaves, and 10 g of pods (15:5:10). Proximate composition was analyzed using AOAC methods, phytochemical screening and Gas Chromatography-Mass Spectrometry (GC-MS) identified key bioactive compounds, and antioxidant activity was evaluated using DPPH and FRAP assays. Sensory attributes were assessed using a 9-point hedonic scale by 50 semi-trained panelists. Results revealed that Variation 1 exhibited higher DPPH radical scavenging activity and greater levels of total phenolics, flavonoids, and anthocyanins, whereas Variation 2 showed stronger ferric-reducing antioxidant power and a more diverse range of bioactive constituents. Sensory evaluation favored Variation 2 for its enhanced appearance, flavor, aroma, and overall acceptability. In conclusion,both Moringasoupvariations offersignificantant ioxidantandnutritionalbenefits,highlightingMoringaoleifera’spotential as a functional food ingredient that promotes health while catering to different consumer preferences.
Oxidative stress, caused by an imbalance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidants, contributes significantly to chronic diseases like cancer, cardiovascular disorders, diabetes, and neurodegenerative conditions. While the body has endogenous defenses, dietary antioxidants, particularly from plants like Moringa oleifera, can help mitigate these effects.
About Moringa oleifera:
Known as the “miracle tree,” Moringa oleifera is rich in vitamins (A, C, E), minerals (iron, calcium, selenium), and phytochemicals (flavonoids, phenolic acids), offering antioxidant, anti-inflammatory, and nutritional benefits.
Design: In vitro experimental design
Location: Affyclone Laboratories and Women’s Christian College, Chennai
Samples: Two Moringa soup variations prepared using different ratios of flowers, leaves, and pods
Variation 1: 10g flowers, 5g leaves, 15g pods
Variation 2: 15g flowers, 5g leaves, 10g pods
Extraction: Aqueous and ethanol extracts prepared and analyzed for nutrients, phytochemicals, and antioxidant capacity
1. Nutrient Composition:
Variation 2 had higher carbohydrates and calcium, making it more energy-dense.
Variation 1 had higher vitamin A and phenolic/flavonoid content.
Iron and selenium levels were beneficial in both.
2. Phytochemical Analysis:
Variation 1 had more diverse and potent bioactive compounds (e.g., flavonoids, phenols, triterpenoids), with stronger therapeutic potential.
GC-MS confirmed antioxidant, anti-inflammatory, and disease-protective compounds in both soups, with Variation 1 being more comprehensive.
3. Antioxidant Assays:
DPPH assay (free radical scavenging):
Variation 2 had a lower IC50 (216.88 µl) than Variation 1 (237.9 µl), indicating better immediate radical scavenging activity.
FRAP assay (ferric reducing power):
Variation 2 again showed stronger activity (IC50: 39.44 µl vs. 46.64 µl).
Total Antioxidant Content:
Surprisingly, Variation 2 had higher total antioxidant capacity despite lower phenolic/flavonoid levels.
Based on the results from nutrient analysis and antioxidant assays (total antioxidant capacity, DPPH, and FRAP), Variation 1 exhibited superior radical scavenging activity compared to Variation 2, whereas Variation 2 demonstrated significantly greater ferric reducing power. Consequently, both Moringa soup variations possess considerable antioxidant potential, with Variation 2 showing a slightly enhanced profile. Furthermore, sensory evaluation revealed that Variation 2 outperformed Variation1 interms ofappearance, flavor, color,odor, andoverall acceptability. Therefore, the ultimate choice of Moringa soup formulation may be guided by individual consumer preferences.
[1] Fenga,C.,Gangemi,S.,Teodoro, M.,Rapisarda,V.,Golokhvast, K.,Docea,A. O.,Tsatsakis,A. M.,&Costa,C.(2017).8-Hydroxydeoxyguanosineas a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicology reports,4, 291–295.https://doi.org/10.1016/j.toxrep.2017.05.008 [2] Docea, A. O., Gofita,E., Goumenou,M.,Calina,D.,Rogoveanu,O.,Varut,M., Olaru,C., Kerasioti,E.,Fountoucidou,P.,Taitzoglou, I., Zlatian,O.,Rakitskii,V.N.,Hernandez,A.F.,Kouretas,D.,&Tsatsakis,A.(2018).Sixmonthsexposureto areallifemixtureof13chemicals\'belowindividualNOAELsinducednonmonotonicsex-dependentbiochemicalandredoxstatuschangesinrats.Foodandchemicaltoxicology:aninternationaljournalpublished for the British Industrial Biological Research Association, 115, 470–481. https://doi.org/10.1016/j.fct.2018.03.052 [3] Tsatsakis,A. M., Docea,A. O., Calina, D., Buga,A. M., Zlatian, O., Gutnikov, S., Kostoff, R. N., &Aschner, M. (2019). Hormetic Neurobehavioraleffects of low dose toxic chemical mixtures in real-life risk simulation (RLRS) in rats. Food and chemical toxicology : an international journalpublished for the British Industrial Biological Research Association, 125, 141–149. https://doi.org/10.1016/j.fct.2018.12.043 [4] Kostoff,R.N.,Heroux,P.,Aschner,M.,&Tsatsakis,A.(2020).Adversehealtheffectsof5Gmobilenetworkingtechnologyunderreal-lifeconditions. Toxicology letters, 323, 35–40. https://doi.org/10.1016/j.toxlet.2020.01.020 [5] Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. IndianJournal of Clinical Biochemistry, 30(1), 11–26. https://doi.org/10.1007/s12291-014-0446-0 [6] Nita,M.,&Grzybowski,A.(2016).TheRoleoftheReactiveOxygenSpecies andOxidativeStressinthePathomechanismoftheAge-RelatedOcularDiseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative medicine and cellular longevity,2016, 3164734.https://doi.org/10.1155/2016/3164734 [7] Reuter,S.,Gupta,S.C.,Chaturvedi,M.M.,&Aggarwal,B.B.(2010).Oxidativestress,inflammation,andcancer:Howaretheylinked?FreeRadicalBiology and Medicine, 49(11), 1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006 [8] Kashyap, P., Kumar, S., Riar, C. S., Jindal, N., Baniwal, P., Guiné, R. P. F., Correia, P. M. R., Mehra, R., & Kumar, H. (2022). RecentAdvances inDrumstick(Moringaoleifera)LeavesBioactiveCompounds:Composition,HealthBenefits,Bioaccessibility,andDietaryApplications.Antioxidants,11(2), 402. https://doi.org/10.3390/antiox11020402 [9] Conti, V., Izzo, V., Corbi, G., Russomanno, G., Manzo, V., De Lise, F., Di Donato, A., & Filippelli, A. (2016). Antioxidant Supplementation in theTreatment of Aging-Associated Diseases. Frontiers in pharmacology, 7, 24. https://doi.org/10.3389/fphar.2016.00024 [10] Fuglie,L.J.(1998).Producingfoodwithoutpesticides:LocalsolutionstocroppestcontrolinWestAfrica (1sted.).ChurchWorldService. [11] Chaudhary, K., & Chaurasia, S. (2017). Neutraceutical properties of Moringa oleifera: a review. European journal of Pharmaceutical and medicalresearch, 4(4), 646-655. [12] Stohs,S.J.,&Hartman,M.J.(2015).ReviewoftheSafetyandEfficacyofMoringaoleifera. Phytotherapyresearch:PTR,29(6),796–804.https://doi.org/10.1002/ptr.5325 [13] Gopalakrishnan, L.,Doriya,K.,& Kumar, D.S. (2016).Moringaoleifera: A review onnutritive importance and itsmedicinal application.FoodScience and Human Wellness, 5(2), 49–56. https://doi.org/10.1016/j.fshw.2016.04.001 [14] Zhang, Y., Peng, L., Li, W., Dai, T., Nie, L., Xie, J., Ai, Y., Li, L., Tian, Y., & Sheng, J. (2020). Polyphenol Extract ofMoringa OleiferaLeavesAlleviates Colonic Inflammation in Dextran Sulfate Sodium-Treated Mice. Evidence-based complementary and alternative medicine: eCAM,2020,6295402.https://doi.org/10.1155/2020/6295402 [15] Gopinath,L. R., Jeevitha, S., Gokiladevi,T., &Archaya, S. (2017). Isolation and Identification oftherapeuticcompoundsfromMoringa oleifera andits antimicrobial activity. IOSR-JPBS, 12, 1-10. [16] Aekthammarat, D., Pannangpetch, P., & Tangsucharit, P. (2019). Moringa oleifera leaf extract lowers high blood pressure by alleviating vasculardysfunction and decreasing oxidative stress in L-NAME hypertensive rats.Phytomedicine: international journal of phytotherapy andphytopharmacology, 54, 9–16. https://doi.org/10.1016/j.phymed.2018.10.023 [17] Mallenakuppe,R.,Homabalegowda,H.,Gouri,M.D.,Basavaraju,P.S.,&Chandrashekharaiah,U.B.(2019). History,taxonomyandpropagationofmoringa oleifera-a review. SSR Institute of International Journal of Life Sciences, 5 (3), 2322–2327. [18] McCordJ.M.(2000).Theevolutionoffreeradicalsandoxidativestress.TheAmericanjournalofmedicine,108(8),652–659.https://doi.org/10.1016/s0002 9343(00)004 12 -5 [19] Rao,A.L.,Bharani,M.,&Pallavi,V.(2006).Roleofantioxidantsandfreeradicalsinhealthanddisease.AdvPharmacolToxicol,7(1),29-38. [20] Sen,S.,&Chakraborty,R.(2011).TheRoleofAntioxidantsinHumanHealth. ACSSymposiumSeries,1083,1–37.https://doi.org/10.1021/bk-2011-1083.ch001 [21] Namiki M. (1990).Antioxidants/antimutagens in food.Critical reviews in food science and nutrition,29(4), 273300.https://doi.org/10.1080/10408399009527528 [22] Ebadi,M.(2001).Antioxidantsandfreeradicalsinhealthanddisease:Anintroductiontoreactiveoxygenspecies,oxidativeinjury,neuronalcelldeathand therapy in neurodegenerative diseases. Crit. Rev. Toxicol, 38, 13-71. [23] Fuglie,L.J.(1999).Themiracletree:MoringaoleiferaNaturalnutritionforthetropics.ChurchWorldService.Retrievedfromhttp://www.moringatrees.org/TMTmeds.html [24] MakkarHPSandBeckerK.NutritionalvalueandantinutritionalcomponentsofwholeandethanolextractedMoringaoleiferaleaves.AnimFeedSciTechnol.1996;63:211-228. [25] Kasolo,J.N.,Bimenya,G.S.,Ojok,L.,Ochieng,J.,&Ogwal-Okeng,J.(2010).PhytochemicalsandusesofMoringaoleiferaleavesinUgandanruralcommunities. [26] Mbikay,M.(2012).TherapeuticpotentialofMoringaoleiferaleavesinchronichyperglycemiaanddyslipidemia:areview.FrontiersinPharmacology,3,24. [27] Berkovich,L.,Earon,G.,Ron,I.,Rimmon,A.,Vexler,A.,&Lev-Ari,S.(2013).MoringaOleiferaaqueousleafextractdown-regulatesnuclearfactor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC complementary and alternative medicine, 13, 1-7. [28] Pakade,V.,Cukrowska,E.,&Chimuka,L.(2013).Comparisonof antioxidantactivityof Moringa oleiferaandselectedvegetables inSouthAfrica. [29] SouthAfricanJournalofScience,109(3–4),1–5.https://doi.org/10.1590/sajs.2013/257989740 [30] González-Romero,J.,Arranz-Arranz,S.,Verardo,V.,García-Villanova,B.,&Guerra-Hernández,E.J.(2020).BioactiveCompoundsandAntioxidantCapacity of Moringa Leaves Grown in Spain Versus 28 Leaves Commonly Consumed in Pre-Packaged Salads. Processes,8(10), 1297.https://doi.org/10.3390/pr8101297 [31] Al-Khafaji, N. J., &Al-Hammed, M.K. (2023). Effect of individualand synergistic addition of Moringa oleifera seeds and leaves powder tobroilerdiets on some physiological and microbial traits and oxidation indicators. Research Journal of Biotechnology, 18(11), 45–55. [32] Perumalsamy,H.,Balusamy,S.R.,Sukweenadhi,J.,Nag,S.,MubarakAli,D.,El-AgamyFarh,M.,Vijay,H.,&Rahimi,S.(2024).Acomprehensivereview on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications.Journalof nanobiotechnology, 22(1), 71. https://doi.org/10.1186/s12951-024-02332-8 [33] Muhammad, S.,Ali,A., Shah, J., Hamza, M., Kashif, M.,Ajat Khel, B. K., et al. (2023). UsingMoringa oleifera stem extract for green synthesis,characterization, and anti-inflammatory activity of silver oxide nanoparticles. Natural and Applied Sciences International Journal, 4, 80–97. [34] Ajibade, T. O., Arowolo, R., &Olayemi, F. O. (2013). Phytochemicalscreeningandtoxicitystudieson themethanolextract of theseedsofMoringaoleifera. Journal of Complementary and Integrative Medicine, 10(1), 11–16. https://doi.org/10.1515/jcim-2012-0003 [35] Peixoto,J.R.O.,Silva,G.C.,Costa,R.A.,Fontenelle,J.L.S.,Vieira,G.H.F.,FontelesFilho,A.A.,&Vieira,R.H.S.F.(2011).Invitroantibacterialeffectofaqueousandethanolic Moringaleafextracts.Asian PacificJournal ofTropical Medicine, 4(3), 201-204.https://doi.org/10.1016/S1995- [36] 7645(11)60069-2 [37] Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of food science and technology,48,412-422. [38] Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of \"antioxidant power\": the FRAP assay. Analyticalbiochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292 [39] Zhao,F.,Wang,P.,Lucardi,R.D.,Su,Z.,&Li,S.(2020).NaturalSourcesandBioactivitiesof2,4-Di-Tert ButylphenolandItsA nalogs.Toxins,12(1),35. https://doi.o rg/10.3390/toxins12010035 [40] Momin, K., &Thomas, S. C. (2020). GC–MS analysis of antioxidant compounds present in different extracts of an endemic plant Dilleniascabrella(Dilleniaceae) leaves and barks. International Journal of Pharmaceutical Sciences and Research, 11(5), 2262-2273.https://doi.org/10.13040/IJPSR.0975-8232.11(5).2262-2273 [41] Miguel M. G. (2010).Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules (Basel, Switzerland),15(12), 9252–9287.https://doi.org/10.3390/molecules15129252 [42] Al-Snafi,A.E.(2015).Therapeuticpropertiesofmedicinalplants:Areviewoftheirantibacterialactivity(Part1).InternationalJournalofPharmacy& Therapeutics, 6(3),137–158. Thi Qar University. Retrieved fromhttps://www.researchgate.net/publicatio n/313696409_THERAPEUTIC_PROPERTIES_OF_ MEDICINAL_PLANTS_A_REVIEW_ OF_THEIR_AN TIBACTERIAL_ACTIVITY_PART_1 [43] Olopade,E.O.,Adefegha,S.A.,Alao,J.O.,Adepoju,A.E.,Fakayode,A.E.,&Oboh,G.(2025).Ameliorativeroleof?-caryophylleneonantioxidantbiomarkers in a paroxetine-induced model of male sexual dysfunction. Basic & Clinical Pharmacology & Toxicology.https://doi.org/10.1111/bcpt.70010 [44] Wani,S.A.,Singh,A.,&Kumar,P.(2022).Spicebioactivecompounds:Properties,applications,andhealthbenefits(1sted.).CRCPress.https://doi.org/10.1201/9781003215387 [45] Parham,S.,Kharazi,A.Z.,Bakhsheshi-Rad,H.R.,Nur,H.,Ismail,A.F.,Sharif,S.,RamaKrishna,S.,&Berto,F.(2020).Antioxidant,AntimicrobialandAntiviral Properties of Herbal Materials. Antioxidants (Basel, Switzerland), 9(12), 1309. https://doi.org/10.3390/antiox9121309 [46] Escobar,A.,Pérez,M.,Romanelli,G.,&Blustein,G.(2020).Thymolbioactivity:Areviewfocusingonpracticalapplications.PhytotherapyResearch,34(8),1837–1846 [47] Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International journal of biomedical science:IJBS, 4(2), 89–96. [48] Anandakumar, P., Kamaraj, S., & Vanitha, M. K. (2021). D-limonene:Amultifunctional compound with potent therapeutic effects.Journal of foodbiochemistry, 45(1), e13566. https://doi.org/10.1111/jfbc.13566 [49] Siddhuraju,P.,&Becker,K.(2003).Antioxidantpropertiesofvarioussolventextractsoftotalphenolicconstituentsfromthreedifferentagroclimaticorigins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of agricultural and food chemistry,51(8), 2144–2155.https://doi.org/10.1021/jf020444+ [50] Anwar,F.,Sajid,L.,Muhammad,A.,&Anwarul,H.G.(2007). Moringaoleifera:Afoodplantwithmultiplemedicinaluses. PhytotherapyResearch,21(1), 17–25. https://doi.org/10.1002/ptr.2023
Copyright © 2025 Sandhyaa K, Dr. K. Nora Vigasini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Paper Id : IJRASET71916
Publish Date : 2025-05-31
ISSN : 2321-9653
Publisher Name : IJRASET
DOI Link : Click Here