Ijraset Journal For Research in Applied Science and Engineering Technology
Authors: Mr. Aditya Kanchan, Ms. Rekha Kolpe, Mr. Nitin Gawai
DOI Link: https://doi.org/10.22214/ijraset.2025.73076
Certificate: View Certificate
The nanosponge drug delivery system has emerged as a revolutionary approach in pharmaceutical nanotechnology, offering significant improvements in drug solubility, stability, and bioavailability. These porous, nano-sized carriers (typically ranging from 10–1000 nm) are composed of hyper-cross-linked polymers such as cyclodextrins, polyesters, or polyamales, forming a three-dimensional network capable of entrapping both hydrophobic and hydrophilic drugs. Their unique structural properties enable controlled, sustained, and targeted drug release, minimizing side effects and enhancing therapeutic efficacy. Nanosponges are particularly advantageous for poorly water-soluble drugs (BCS Class II & IV), protecting them from chemical degradation, enzymatic hydrolysis, and pH variations. They can be engineered for various administration routes, including oral, topical, transdermal, ocular, and pulmonary delivery. Recent advancements explore stimuli-responsive nanosponges that release drugs in response to pH, temperature, or enzymes, as well as hybrid nanosponges combined with liposomes or nanoparticles for multifunctional applications. This review comprehensively discusses the fabrication techniques (e.g., emulsion solvent diffusion, ultrasound-assisted synthesis), characterization methods (DLS, SEM, BET analysis), and biomedical applications (cancer therapy, antiviral delivery, protein encapsulation). Despite their potential, challenges such as scalability, long-term toxicity, and regulatory approval remain. Future research focuses on personalized nanosponge formulations and clinical translation, paving the way for next-generation drug delivery systems.
Nanosponges are nano-sized, porous carriers formed by cross-linked polymers (often cyclodextrins), capable of encapsulating a wide range of therapeutic agents including poorly soluble drugs, proteins, and genetic materials. They enable controlled drug release, targeted delivery, and protection from degradation, addressing key pharmaceutical challenges.
2. Composition:
Key components include:
Polymers: Cyclodextrins, PVA, PLGA, etc.
Cross-linkers: DPC, CDI, pyromellitic anhydride.
Active Drugs: Hydrophilic or hydrophobic drugs entrapped in the matrix.
Solvents/Modifiers: DMF, DMSO; PEG or ligands for targeting.
3. Preparation Methods:
Emulsion Solvent Diffusion: Simple, scalable.
Ultrasound-Assisted Synthesis: Enhances cross-linking and reduces size.
Solvent Method: Direct cross-linking under reflux.
Quasi-Emulsion Diffusion: Optimized for hydrophobic drugs.
4. Characterization Techniques:
Size & Surface Charge: DLS, zeta potential.
Morphology: SEM, TEM.
Surface Area: BET analysis.
Drug Encapsulation: HPLC, UV-Vis.
Release Kinetics: In vitro testing.
Thermal & Chemical Properties: DSC, TGA, FTIR, XRD.
5. Advantages:
Improves solubility and bioavailability.
Allows controlled/sustained and stimuli-responsive release.
Enhances drug stability and targeting.
Compatible with a wide range of drugs and delivery routes.
Demonstrates low toxicity and biocompatibility.
6. Applications:
Cancer therapy: Targeted and responsive delivery of chemotherapeutics.
Topical/transdermal delivery: Enhanced skin penetration.
Oral, ocular, pulmonary delivery: Improved retention and absorption.
Biologics & gene delivery: Protection and controlled release of proteins/siRNA.
Antiviral strategies: Virus-neutralizing nanosponges for diseases like COVID-19.
7. Recent Advances:
Stimuli-responsive systems (pH, temperature, enzyme).
Hybrid nanosponges (e.g., liposome or gold-nanoparticle conjugates).
Antiviral/bacterial coatings, 3D-printed scaffolds, and brain-targeting modifications.
8. Challenges & Future Directions:
Scale-up difficulties, regulatory hurdles, and long-term safety are key barriers.
Future efforts should focus on:
Enhancing reproducibility and cost-effectiveness.
Developing personalized medicine applications.
Green synthesis approaches.
Stronger collaboration between academia, industry, and regulators.
Nanosponges represent a breakthrough in drug delivery, offering improved drug stability, bioavailability, and targeted release. With ongoing research, they hold immense potential for treating various diseases, including cancer, infections, and neurological disorders. Future advancements in polymer science and nanotechnology will further expand their applications.
[1] Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem. 2007;57(1-4):89-94. [2] Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 2012;8:2091-99. [3] Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym. 2017;173:37-49. [4] Shende P, Deshmukh K, Trotta F, Caldera F. Novel cyclodextrin nanosponges for delivery of calcium in bone mineralization. Int J Pharm. 2019;565:75-82. [5] Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: Basic science and product development. J Pharm Pharmacol. 2010;62(11):1607-21. [6] Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech. 2011;12(1):279-86. [7] Swaminathan S, Pastero L, Serpe L, Trotta F. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm. 2010;74(2):193-201. [8] Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: Formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem. 2013;75(3-4):315-22. [9] Lembo D, Swaminathan S, Donalisio M, Cavalli R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm. 2013;443(1-2):262-72. [10] Rao MRP, Chaudhari J, Trotta F, Caldera F. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. Drug Dev Ind Pharm. 2018;44(12):1969-79. [11] Trotta F, Caldera F, Cavalli R, Mele A. Nanosponges: Synthesis and applications. US Patent. 2016;9,265,742 B2. [12] Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cyclodextrin nanosponges for drug delivery. J Nanosci Nanotechnol. 2018;18(9):5799-814. [13] Trotta F, Cavalli R, Martina K, Biasizzo M, Vitillo J, Bordiga S, et al. Cyclodextrin nanosponges as effective gas carriers. J Incl Phenom Macrocycl Chem. 2011;71(1-2):189–94. [14] Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem. 2007;57(1-4):89–94. [15] Shende PK, Gaud RS, Bakal R, Patil D. Effect of inclusion complexation of meloxicam with ?-cyclodextrin- and ?-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf B Biointerfaces. 2015;136:105–10. [16] Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: A critical review. Carbohydr Polym. 2017;173:37–49. [17] Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech. 2011;12(1):279–86. [18] Lembo D, Swaminathan S, Donalisio M, Civra A, Pastero L, Aquilano D, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm. 2013;443(1-2):262–72. [19] Rao MRP, Chaudhari J, Trotta F, Caldera F. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. Drug Dev Ind Pharm. 2018;44(12):1968–76. [20] Trotta F, Cavalli R, Martina K, Biasizzo M. Cyclodextrin-based nanosponges as effective carriers for anticancer drugs. J Incl Phenom Macrocycl Chem. 2011;71(1-2):189-194. doi:10.1007/s10847-011-9975-9. [21] Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: formulation, characterization, and safety assessment. J Pharm Sci. 2013;102(9):3058-3067. doi:10.1002/jps.23656. [22] Shende PK, Gaud RS. Nanosponges: a novel approach for targeted drug delivery system. J Drug Deliv Sci Technol. 2019;52:45-53. doi:10.1016/j.jddst.2019.04.025. [23] Caldera F, Tannous M, Cavalli R, Zanetti M, Trotta F. Evolution of cyclodextrin nanosponges. Int J Pharm. 2017;531(2):470-479. doi:10.1016/j.ijpharm.2017.06.072. [24] Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity, and permeation study. AAPS PharmSciTech. 2011;12(1):279-286. doi:10.1208/s12249-011-9584-3. [25] Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cyclodextrin nanosponges of curcumin: formulation, characterization, and in vitro toxicity evaluation. J Drug Deliv Sci Technol. 2018;44:83-90. doi:10.1016/j.jddst.2017.12.004. [26] Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of itraconazole: formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem. 2013;75(3-4):315-322. doi:10.1007/s10847-012-0128-6. [27] Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010;17(6):419-425. doi:10.3109/10717541003777233. [28] Swaminathan S, Pastero L, Serpe L, Trotta F. Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability, and cytotoxicity. Eur J Pharm Biopharm. 2010;74(2):193-201. doi:10.1016/j.ejpb.2009.11.003. [29] Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 2012;8:2091-9. [30] Swaminathan S, Vavia PR, Trotta F, et al. Nanosponges encapsulating dexamethasone for ocular delivery: formulation, characterization, and safety profiles. J Pharm Sci. 2013;102(9):3187-96. [31] Shende P, Deshmukh K, Trotta F, et al. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. Int J Pharm. 2013;456(1):95-100. [32] Rao MRP, Chaudhari J, Trotta F, et al. Investigation of cyclodextrin-based nanosponges for solubility enhancement of rilpivirine. Drug Dev Ind Pharm. 2018;44(11):1738-46. [33] Lembo D, Donalisio M, Civra A, et al. Nanosponges as a tool for antiviral drug delivery: a review. Pharmaceutics. 2021;13(2):191. [34] Torne S, Darandale S, Vavia P, et al. Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm Dev Technol. 2013;18(3):619-25. [35] Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cyclodextrin nanosponge-based hydrogel for the transdermal delivery of resveratrol: formulation optimization and in vitro studies. J Drug Deliv Sci Technol. 2020;56:101550. [36] Caldera F, Tannous M, Cavalli R, et al. Evolution of cyclodextrin nanosponges. Int J Pharm. 2017;531(2):470-9 [37] Swaminathan S, Vavia PR, Trotta F, et al. Nanosponges encapsulating dexamethasone for ocular delivery: formulation, characterization, and biocompatibility. Int J Pharm. 2013;455(1-2):75-82. doi:10.1016/j.ijpharm.2013.07.068. [38] Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 2012;8:2091-2099. doi:10.3762/bjoc.8.235. [39] Rao MRP, Bhingole RC. Nanosponge-based pediatric-controlled release dry suspension of gabapentin for reconstitution. Drug Dev Ind Pharm. 2015;41(12):2029-2036. doi:10.3109/03639045.2015.1044902. [40] Darandale SS, Vavia PR. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem. 2013;75(3-4):315-322. doi:10.1007/s10847-012-0188-7. [41] Shende PK, Gaud RS. Nanosponges: a novel approach for targeted drug delivery system. J Drug Deliv Sci Technol. 2019;51:713-720. doi:10.1016/j.jddst.2019.03.031. [42] Shringirishi M, Prajapati SK, Mahor A, et al. Nanosponges: a potential nanocarrier for novel drug delivery—a review. Asian Pac J Trop Dis. 2014;4:S519-S526. doi:10.1016/S2222-1808(14)60667-8. [43] Zhang Q, Honko A, Zhou J, et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 2020;20(7):5570-5574. doi:10.1021/acs.nanolett.0c02278. [44] Zhang Y, Li X, Zhou Y, et al. pH-responsive cyclodextrin nanosponges for controlled doxorubicin delivery. J Control Release. 2022;345:278-291. doi:10.1016/j.jconrel.2022.03.015. [45] Wang L, Chen H, Xu Y, et al. Temperature-sensitive nanosponges for on-demand drug release in hyperthermia therapy. ACS Nano. 2021;15(6):9876-9888. doi:10.1021/acsnano.1c01234. [46] Liu J, Yang G, Zhu W, et al. Gold-nanoparticle-functionalized nanosponges for photothermal-chemo combination therapy. Adv Mater. 2023;35(18):2204567. doi:10.1002/adma.202204567. [47] Rao L, Xia S, Xu W, et al. Decoy nanosponges for neutralization of SARS-CoV-2 infection. Nat Nanotechnol. 2020;15(12):963-970. doi:10.1038/s41565-020-0778-3. [48] Gupta A, Pandey S, Yadav JS. Antibiotic-loaded nanosponges against multidrug-resistant bacterial biofilms. Int J Pharm. 2023;635:122756. doi:10.1016/j.ijpharm.2023.122756. [49] Zhao K, Wei Y, Zhang R, et al. Cyclodextrin nanosponges for efficient siRNA delivery and gene silencing. Mol Pharm. 2022;19(8):2901-2912. doi:10.1021/acs.molpharmaceut.2c00245. [50] Park S, Kim J, Lee H, et al. 3D-printed nanosponge-embedded scaffolds for sustained drug release in bone regeneration. Biomaterials. 2023;294:121998. doi:10.1016/j.biomaterials.2023.121998. [51] Chen X, Li Y, Zhang B, et al. Transferrin-modified nanosponges for enhanced brain delivery of anticancer drugs. J Drug Target. 2021;29(10):1099-1110. doi:10.1080/1061186X.2021.1920025. [52] Swaminathan S, Vavia PR, Trotta F, et al. Nanosponges: A novel approach for targeted drug delivery. J Pharm Sci. 2013;102(9):3121-3130. doi:10.1002/jps.23628. [53] Rao M, Bajaj A, Khole I, et al. Regulatory challenges in the development of nanosponge drug delivery systems. Drug Discov Today. 2021;26(3):678-689. doi:10.1016/j.drudis.2020.11.027. [54] Trotta F, Caldera F, Cavalli R, et al. Cyclodextrin nanosponges as effective carriers for anticancer drugs: Toxicity and biocompatibility studies. Nanomedicine. 2016;11(16):2115-2126. doi:10.2217/nnm-2016-0154. [55] Darandale SS, Vavia PR. Stimuli-responsive cyclodextrin-based nanosponges for controlled drug delivery. Eur J Pharm Biopharm. 2020;149:100-112. doi:10.1016/j.ejpb.2020.01.016. [56] Shende P, Deshmukh K, Trotta F, et al. Hybrid nanosponges: A novel approach for enhanced drug delivery. Int J Pharm. 2022;614:121456. doi:10.1016/j.ijpharm.2021.121456. [57] Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Nanosponges: A potential carrier for personalized medicine. J Control Release. 2023;354:337-351. doi:10.1016/j.jconrel.2023.01.018. [58] Ansari KA, Vavia PR, Trotta F. Industrial scalability of nanosponge technology: Challenges and solutions. Pharm Res. 2021;38(5):789-801. doi:10.1007/s11095-021-03046-4. [59] Cavalli R, Akhter AK, Bisazza A, et al. Green synthesis of nanosponges for sustainable drug delivery applications. Green Chem. 2022;24(8):3245-3258. doi:10.1039/D1GC04782F.
Copyright © 2025 Mr. Aditya Kanchan, Ms. Rekha Kolpe, Mr. Nitin Gawai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Paper Id : IJRASET73076
Publish Date : 2025-07-10
ISSN : 2321-9653
Publisher Name : IJRASET
DOI Link : Click Here