• Home
  • Submit Paper
  • Check Paper Status
  • Download Certificate/Paper
  • FAQs
  • Feedback
  • Contact Us
Email: ijraset@gmail.com
IJRASET Logo
Journal Statistics & Approval Details
Recent Published Paper
Our Author's Feedback
 •  ISRA Impact Factor 7.894       •  SJIF Impact Factor: 7.538       •  Hard Copy of Certificates to All Authors       •  DOI by Crossref for all Published Papers       •  Soft Copy of Certificates- Within 04 Hours       •  Authors helpline No: +91-8813907089(Whatsapp)       •  No Publication Fee for Paper Submission       •  Hard Copy of Certificates to all Authors       •  UGC Approved Journal: IJRASET- Click here to Check     
  • About Us
    • About Us
    • Aim & Scope
  • Editorial Board
  • Impact Factor
  • Call For Papers
    • Submit Paper Online
    • Current Issue
    • Special Issue
  • For Authors
    • Instructions for Authors
    • Submit Paper
    • Download Certificates
    • Check Paper Status
    • Paper Format
    • Copyright Form
    • Membership
    • Peer Review
  • Past Issue
    • Monthly Issue
    • Special Issue
  • Pay Fee
    • Indian Authors
    • International Authors
  • Topics
ISSN: 2321-9653
Estd : 2013
IJRASET - Logo
  • Home
  • About Us
    • About Us
    • Aim & Scope
  • Editorial Board
  • Impact Factor
  • Call For Papers
    • Submit Paper Online
    • Current Issue
    • Special Issue
  • For Authors
    • Instructions for Authors
    • Submit Paper
    • Download Certificates
    • Check Paper Status
    • Paper Format
    • Copyright Form
    • Membership
    • Peer Review
  • Past Issue
    • Monthly Issue
    • Special Issue
  • Pay Fee
    • Indian Authors
    • International Authors
  • Topics

Ijraset Journal For Research in Applied Science and Engineering Technology

  • Home / Ijraset
  • On This Page
  • Abstract
  • Introduction
  • Conclusion
  • References
  • Copyright

Plant Disease Detection

Authors: Goutami G Manvi, Gayana K N, G Ramya Sree, K Divyanjali, Dr Kirankumari Patil

DOI Link: https://doi.org/10.22214/ijraset.2022.43221

Certificate: View Certificate

Abstract

Plant growth is major requirement for framers, as it creates a path for their living, plants getting affected and their growth is related hand in hand. Framers strive to cultivate healthy crops; in spite of it plants getting affected are the major cause of crop failure. Plant disease is now the risk factor not only for framers but also to customers, environment and global economy. Immoderate pesticide usage is the cause for major health issues in plants. Plant disease detection using image processing can be the best way to predict and get accurate results. This project is based on deep convolutional neural networks which enhances the accuracy and training efficiency. This application will help many farmers who are uneducated to get correct information about diseases and help increase their yield. We are fostering a web application that can distinguish plant infection. The objective is to distinguish different plant infection by checking picture out. By utilizing CNN Algorithm we can identify the plant disease precisely. By the results of accuracy it shows this model is better than any traditional framing.

Introduction

I. INTRODUCTION

Plant disease is linked to agricultural sustainability problems. Bacteria may get clogged as a result of unfamiliar farming practices, significantly restricting their opportunity to respond. The ideal and definite finding of plant diseases is one of the backbones of accuracy in agribusiness. It is important to prevent pointless abuse of monetary and various assets, hence leading to better construction in this growing greenhouse medium, adequate and effective plant/leaf infection identification including immediate aversion is never really been huger.

A few diseases have no apparent side effects, or the impact becomes observable past time to act, and in those circumstances, a refined investigation is compulsory. In any case, most diseases produce an appearance in the apparent range of some sort or another; hence an excellent way for plant infection identification is sight examination of a prepared competent. A plant scientist must have exceptional insight abilities so one can distinguish trademark side effects in order to perform an accurate plant infection diagnosis. Assortments in incidental reactions demonstrated from infected leaves might lead to a hasty conclusion, as inexperienced groundskeepers and experts may have more difficulty to determine than a specialized plant scientist. Taking advantage of digital image processing techniques for example colour thresholding and analysis was utilized to determine plant infections.

II. RELATED WORK

  1. In research paper [1] titled A Review of Image Processing and Soft Computing Algorithms for Plant Disease Prediction dated in the year 2021, a review on prediction of plant diseases are done using image processing and soft computing algorithms by the authors. Image processing here is used to diagnose the problems occurring in plants.
  2. In research paper [2], according to research journal in 2019 plant disease detection is done using machine learning and canny edge detection algorithm.
  3. In research paper [3], a clear-up assessment of identification of plant diseases is done using convolutional neural networks on pictures by the authors. Their drawbacks and successful use cases were explained in the paper.
  4. Paper [5] investigates the identification of plant illnesses as well as the detection of contaminated plant parts. The input photographs are taken first, and then the image processing begins. The major goal of this research is to progress and improve the computational filters of a neural network technique in order to get better outcomes. This research includes a task that will calculate the percentage of infected plant area.

III. PROPOSED SYSTEM

We are fostering a web application that can distinguish plant infection. The objective is to distinguish different plant infection by checking picture out. We are using deep learning for this project because here we are working with image data. Deep learning has a Convolution neural network that is used to find features from the leaf of the plant. By utilizing CNN Algorithm we can identify the plant disease precisely.

The objective is to distinguish different plant disease by checking picture out.

In the web application

  1. Client should be able to upload an image of an infected plant leaf from there device
  2. CNN Model should be able to detect plant infection.
  3. Finally client will get the plant disease name and also some suggestions on preventing the disease and it also suggests some supplements and fertilizers.

IV. REQUIREMENTS

V. METHODOLOGY

  1. Image Dataset Acquisition: The Dataset was taken from Kaggle of Plant Village dataset. In this data-set, 39 different classes of plant leaf and Background images are available. The data-set containing 61,486 images. There is a total of 35 Classes that we have to predict using the CNN Model.

2. Pre-processing of Images: Transforms are used for Data Augmentation like cropping the image, resize the image, convert the image to tensor, rotate the image, and many more. Transforms work as a filter for all images.

3. Train and Test Split: Split the data into train, test and validation data. Total 36584 for train, 15679 for validation and remaining images for testing.

4. Model Creation: We use a convolutional neural network for model creation. We also specified filter size for the Conv layer and Pool layer and the shape on each layer.

5. Web Application Creation: After Creating this Model, We create on web application using Flask.

In the web application user will be able to upload a plant image and detect what kind of disease it has and app also suggest some supplements and fertilizers and also ways to prevent the disease.

VI. RESULTS

The Results introduced in this segment are connected with preparing with entire data set as we know that CNN can learn highlights when used on bigger datasets. Results accomplished when prepared with just unique pictures won't be investigated. After adjusting the boundaries, a general precision of 96.7% was accomplished.

VII.  APPLICATIONS

A. Farmers in certain nations lack adequate facilities or even the knowledge of how to contact professionals. As a result, consulting specialists is both expensive and time-consuming.

B. In this situation, the recommended approach proved to be useful for monitoring huge agricultural fields. It is also easier and less expensive to identify illnesses automatically by simply looking at the signs on the plant leaves.

C. Plant disease detection by sight is a more time-consuming and inaccurate process that can only be performed in restricted locations.

D. Automatic detection, on the other hand, requires less work, quicker, and is more accurate.

E. It also has important academic research value.

F. This project is important in agriculture to increase the yield.

VIII. FUTURE SCOPE

Advancements that can be done to the project is with detecting plant disease it should be able to locate where the picture of leaf is taken so we can understand what type of crops should be grown or should not be grown in that particular area.

Conclusion

Contrasted and conventional image processing techniques, which manage plant disease recognition undertakings in a few stages and connections, plant disease/infection identification systems utilizing profound deep learning bind together them from start to finish including extraction, which has a wide advancement possibilities. This application will help many farmers who are uneducated to get correct information about diseases and help increase their yield. In spite of the fact that plant disease discovery innovation is growing quickly, it is transitioning from scientific study to farming application; nevertheless, there is still a distinct distinction between experienced applications in genuine common habitat, and there are a few challenges to be resolved.

References

[1] 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) | 978-1-6654-2921-4/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICCIKE51210.2021.9410728 [2] [IEEE 2020 International Conference on Communication and Signal Processing (ICCSP) - Chennai, India (2020.7.28-2020.7.30)] 2020 International Conference on Communication and Signal Processing (ICCSP) - A Systematic Review on Image Processing and Machine Learning Techniques for Detecting Plant Diseases [3] Andre da Silva Abide, Paulo Afonso Ferreira, Flavio de Barros Vidal: Plant diseases recognition on images using convolutional neural networks: A systematic review. Compute. Electron. Agric. 185: 106125 (2021) [4] Plant disease detection using CNNs and GANs as an augmentative approach R Gandhi, S Nimbalkar, N Yelamanchili… - 2018 IEEE …, 2018 - ieeexplore.ieee.org [5] Diptesh Majumdar, Dipak Kumar Kole, Aruna Chakraborty, Dwijesh Dutta Majumder. REVIEW: DETECTION & DIAGNOSIS OF PLANT LEAF DISEASE USING INTEGRATED IMAGE PROCESSING APPROACH. International Journal of Computer Engineering and Applications. June 2014.

Copyright

Copyright © 2022 Goutami G Manvi, Gayana K N, G Ramya Sree, K Divyanjali, Dr Kirankumari Patil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Download Paper

Authors : Goutami G Manvi

Paper Id : IJRASET43221

Publish Date : 2022-05-24

ISSN : 2321-9653

Publisher Name : IJRASET

DOI Link : Click Here

About Us

International Journal for Research in Applied Science and Engineering Technology (IJRASET) is an international peer reviewed, online journal published for the enhancement of research in various disciplines of Applied Science & Engineering Technologies.

Quick links
  • Privacy Policy
  • Refund & Cancellation Policy
  • Shipping Policy
  • Terms & Conditions
Quick links
  • Home
  • About us
  • Editorial Board
  • Impact Factor
  • Submit Paper
  • Current Issue
  • Special Issue
  • Pay Fee
  • Topics
Journals for publication of research paper | Research paper publishers | Paper publication sites | Best journal to publish research paper | Research paper publication sites | Journals for paper publication | Best international journal for paper publication | Best journals to publish papers in India | Journal paper publishing sites | International journal to publish research paper | Online paper publishing journal

© 2022, International Journal for Research in Applied Science and Engineering Technology All rights reserved. | Designed by EVG Software Solutions