Ijraset Journal For Research in Applied Science and Engineering Technology
Authors: Yash Anil Chaudhari, Yash Bhatu Joshi , Karan Sanjay Patil , Devyani Ajaykumar Rathod , Mr. Shaikh Habiburrahman , Mr. Mohammed Awais , Mr. Saeed Ahmad , Mr. Sanaurrehman Momin
DOI Link: https://doi.org/10.22214/ijraset.2025.74553
Certificate: View Certificate
Artificial intelligence (AI) encompasses a wide range of methodologies that have been utilized by pharmaceutical corporations over decades, including machine learning, deep learning, and other forms of computational advancements. The development of such advances has opened up unprecedented capabilities of accelerating drug discovery and delivery, increasing treatment regimen optimization, as well as optimizing patient outcomes. AI is revolutionizing the pharmaceutical sector in earnest, altering every aspect ranging from drug discovery and development to precision medicines as target identification and validation, excipient selection, prediction of synthetic route, supply chain optimization, monitoring of continuous manufacturing processes, or predictive maintenance, among others. Although the incorporation of AI has the potential to maximize efficiency, minimize costs, and enhance both medicine and patient health, it nevertheless poses critical issues from a regulatory perspective. In this review article, we will give a holistic overview of AI\'s applications in the pharma industry, including fields like drug discovery, target optimization, personalized medicine, drug safety, and others. By examining ongoing research patterns and case studies, we seek to enlighten on AI\'s revolutionary influence on the pharma industry and its broader implications for healthcare.
1. Evolution of AI in Pharma
AI's use in pharmaceuticals began in the 1980s–90s with basic molecular modeling tools.
In the early 2000s, machine learning emerged, enabling analysis of large, complex datasets.
The 2010s saw rapid AI growth due to advances in Big Data, deep learning, and access to vast biological/chemical datasets (e.g., genomics, proteomics, HTS).
AI is now deeply integrated into all stages of drug development, from target discovery to personalized medicine.
2. Impact on Drug Discovery
AI-driven methods have revolutionized the traditionally slow, expensive, and failure-prone drug development process.
AI enables faster identification of drug candidates, repurposing of existing drugs, and more precise targeting for rare and neglected diseases.
Algorithms can analyze vast patient data to recommend personalized therapies, improving outcomes and reducing side effects.
3. Workflow and Model Development
High-quality data is essential for effective AI models.
Models must be continuously updated and tested on external datasets to ensure stability and generalizability.
Techniques like cross-validation, ensemble learning, and feature selection help mitigate overfitting and improve performance.
4. Applications in Drug Discovery
Hit identification and lead optimization are streamlined using AI.
AI helps with ADME profiling (absorption, distribution, metabolism, excretion) and predicts drug-likeness and toxicity early in development.
Tools like QSAR, molecular docking, and generative models (e.g., GANs) design new compounds with optimal pharmacological profiles.
5. AI Technologies & Case Examples
Companies like Recursion and DeepMind use AI for protein structure prediction (e.g., AlphaFold), compound screening, and map-based exploration of disease biology.
Recursion operates on one of the world’s largest biological and chemical datasets to discover new therapeutics for rare and complex diseases.
6. Key Machine Learning Methods in Drug Discovery
Virtual Screening: ML models (e.g., random forests, SVMs, deep learning) predict ligand-target binding with greater accuracy than traditional methods.
Target Identification: ML integrates genomic, proteomic, and clinical data to prioritize disease-related targets.
Lead Optimization: ML predicts structure–activity relationships (SARs) to enhance potency, selectivity, and drug-like properties.
7. Challenges and Considerations
Interpretability of complex AI models (especially deep learning) is a major hurdle.
Ethical concerns, data privacy, and regulatory barriers remain.
Adoption requires strong data infrastructure, collaboration between industry and regulators, and expertise in both AI and pharmaceutical sciences.
AI is quickly changing the pharmaceutical sector, bringing about revolutionary changes in a number of areas, including tailored medications, drug development, and discovery. The use of AI technology promises to improve patient health and medications overall, increase efficiency, and lower costs, but at what cost? It is anticipated that AI-driven methods will continue to dominate drug discovery in the future, allowing for more precise predictions of drug-target interactions and a deeper comprehension of disease physiopathology. Larger biomedical datasets, such as genomes, proteomics, metabolomics, and patient clinical trial data, will be used to train AI models in order to find new drug candidates and improve medication design, lowering the possibility of clinical trial failure. Furthermore, since sophisticated algorithms will make it possible to identify qualified candidates based on genetic and phenotypic profiles, ensuring that trials are carried out with the most suitable cohort of participants, AI has the potential to completely transform clinical trials by enhancing patient recruitment, monitoring, and data analysis. AI will keep propelling the development of tailored medications by using Big Data to customize care for each patient. Because genetic, environmental, and lifestyle data can be analyzed, highly customized treatment programs that cater to each patient\'s unique needs will continue to be widely used. Pharmaceutical manufacturing processes will be impacted by AI-driven technology, which will greatly improve quality control, predictive maintenance, and process optimization, among other areas. This implementation will save costs and improve product consistency by enabling more scalable and efficient production processes. Predictive maintenance algorithms will stop equipment failures and reduce downtime, enabling more responsive and agile manufacturing operations, while AI-driven digital twins will model and optimize manufacturing processes in real-time. Aboutpharmacovigilance powered by AI. By more effectively evaluating post-market monitoring data and detecting adverse medication reactions, artificial intelligence (AI) will be crucial in enhancing drug safety by facilitating quicker responses to safety issues and more informed choices about label modifications or drug withdrawals. The diagnosis and prediction of safety hazards will be made possible by the extraction of insightful information from social media and electronic health records using sophisticated machine learning and natural language processing algorithms. Lastly, when AI technologies are incorporated into pharmaceutical procedures, ethical and regulatory issues will become increasingly crucial in order to preserve industry trust and compliance and guarantee the accountability, transparency, and fairness of AI systems. This necessitates the adoption of legal frameworks that address issues related to AI, such as algorithm bias, data privacy, and the verification of outcomes produced by AI. For instance, the United States\' HIPAA Privacy Rule establishes national guidelines aimed at protecting patient medical records and other personally identifiable health data, which are generally known as \"protected health information.\" Health plans, health care clearinghouses, and healthcare providers that participate in specific electronic health care transactions are all subject to this law. This is in line with programs like the FDA\'s Digital Health Innovation Action Plan, which will keep influencing the regulatory environment for AI-driven pharmaceutical innovations in the US and ensuring their responsible and verified usage. A coordinated strategy outlining a number of cooperative initiatives for the Commission and member states was also released by the European Commission in April 2021, along with a proposed rule (AI rule) aiming at harmonizing norms for AI. With an emphasis on the many social and economic advantages across several industries as well as the need to preserve privacy while maintaining security and protection, this regulation package sought to increase public confidence in AI and encourage the growth and development of AI technology.
[1] Recursion. AI Algorithm. Available online: https://www.recursion.com (accessed on 12 August 2024). [2] Efficacy and Safety of REC-2282 in Patients with Progressive Neurofibromatosis Type 2 (NF2) Mutated Meningiomas (POPLARNF2). Available online: https://clinicaltrials.gov/study/NCT05130866?term=POPLAR&rank=2 (accessed on 12 August 2024). [3] Parvatikar, P.P.; Patil, S.; Khaparkhuntikar, K.; Patil, S.; Singh, P.K.; Sahana, R.; Kulkarni, R.V.; Raghu, A.V. Artificial intelligence: Machine learning approach for screening large database and drug discovery. Antivir. Res. 2023, 220, 105740. [CrossRef] [4] Siddiqui, G.A.; Stebani, J.A.; Wragg, D.; Koutsourelakis, P.S.; Casini, A.; Gagliardi, A. Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: A Case Study. Chemistry 2023, 29, e202302375. [CrossRef] [5] Brinkhaus, H.O.; Rajan, K.; Schaub, J.; Zielesny, A.; Steinbeck, C. Open data and algorithms for open science in AI-driven molecular informatics. Curr. Opin. Struct. Biol. 2023, 79, 102542. [CrossRef] [6] DGIdb. Available online: https://www.dgidb.org (accessed on 12 August 2024). [7] The Connectivity Map. Available online: https://www.broadinstitute.org/connectivity-map-cmap (accessed on 12 August 2024). [8] DeepChem. Available online: https://deepchem.io (accessed on 13 August 2024). [9] Schrödinger’s Maestro Platform. Available online: https://www.schrodinger.com/platform/products/maestro (accessed on 13 August 2024) [10] Insilico Medicine. Available online: https://insilico.com (accessed on 13 August 2024). [11] XtalPi. Available online: https://www.xtalpi.com/en (accessed on 13 August 2024). [12] Cyclica. Available online: https://cyclicarx.com/science (accessed on 13 August 2024). [13] Le, N.Q.K.; Tran, T.X.; Nguyen, P.A.; Ho, T.T.; Nguyen, V.N. Recent progress in machine learning approaches for predicting carcinogenicity in drug development. Expert Opin. Drug Metab. Toxicol. 2024, 20, 621–628. [CrossRef] [14] Chang, W.T.; Liu, C.F.; Feng, Y.H.; Liao, C.T.; Wang, J.J.; Chen, Z.C.; Lee, H.C.; Shih, J.Y. An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline. Arch. Toxicol. 2022, 96, 2731–2737. [CrossRef] [PubMed] [15] Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhaes, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [CrossRef] [16] Mukherjee, D.; Roy, D.; Thakur, S. Transforming Cancer Care: The Impact of AI-Driven Strategies. Curr. Cancer Drug Targets 2024, 24, 1–4. [CrossRef] [17] Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [CrossRef] [PubMed] [18] Liu, D.; Schilling, B.; Liu, D.; Sucker, A.; Livingstone, E.; Jerby-Arnon, L.; Zimmer, L.; Gutzmer, R.; Satzger, I.; Loquai, C.; et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 2019, 25, 1916–1927. [CrossRef] [PubMed] [19] Johannet, P.; Coudray, N.; Donnelly, D.M.; Jour, G.; Illa-Bochaca, I.; Xia, Y.; Johnson, D.B.; Wheless, L.; Patrinely, J.R.; Nomikou, S.; et al. Using Machine Learning Algorithms to Predict Immunotherapy Response in Patients with Advanced Melanoma. Clin. Cancer Res. 2021, 27, 131–140. [CrossRef] [PubMed] [20] Dercle, L.; Fronheiser, M.; Lu, L.; Du, S.; Hayes, W.; Leung, D.K.; Roy, A.; Wilkerson, J.; Guo, P.; Fojo, A.T.; et al. Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clin. Cancer Res. 2020, 26, 2151–2162. [CrossRef] [21] Blasiak, A.; Khong, J.; Kee, T. CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence. Transl. Life Sci. Innov. 2020, 25, 95–105. [CrossRef] [22] Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Goncalves, E.; Barthorpe, S.; Lightfoot, H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166, 740–754. [CrossRef] [23] Kuenzi, B.M.; Park, J.; Fong, S.H.; Sanchez, K.S.; Lee, J.; Kreisberg, J.F.; Ma, J.; Ideker, T. Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells. Cancer Cell 2020, 38, 672–684.e676. [CrossRef] [24] Sheu, Y.H.; Magdamo, C.; Miller, M.; Das, S.; Blacker, D.; Smoller, J.W. AI-assisted prediction of differential response to antidepressant classes using electronic health records. NPJ Digit. Med. 2023, 6, 73. [CrossRef] [25] Arnold, P.I.M.; Janzing, J.G.E.; Hommersom, A. Machine learning for antidepressant treatment selection in depression. Drug Discov. Today 2024, 29, 104068. [CrossRef] [PubMed] [26] Liu, X.; Read, S.J. Development of a multivariate prediction model for antidepressant resistant depression using reward-related predictors. Front. Psychiatry 2024, 15, 1349576. [CrossRef] [27] Stankoski, S.; Jordan, M.; Gjoreski, H.; Lustrek, M. Smartwatch-Based Eating Detection: Data Selection for Machine Learning from Imbalanced Data with Imperfect Labels. Sensors 2021, 21, 1902. [CrossRef] [28] Lam, B.; Catt, M.; Cassidy, S.; Bacardit, J.; Darke, P.; Butterfield, S.; Alshabrawy, O.; Trenell, M.; Missier, P. Using Wearable Activity Trackers to Predict Type 2 Diabetes: Machine Learning-Based Cross-sectional Study of the UK Biobank Accelerometer Cohort. JMIR Diabetes 2021, 6, e23364. [CrossRef] [29] Kargarandehkordi, A.; Slade, C.; Washington, P. Personalized AI-Driven Real-Time Models to Predict Stress-Induced Blood Pressure Spikes Using Wearable Devices: Proposal for a Prospective Cohort Study. JMIR Res. Protoc. 2024, 13, e55615. [CrossRef] [30] Garbarino, S.; Bragazzi, N.L. Revolutionizing Sleep Health: The Emergence and Impact of Personalized Sleep Medicine. J. Pers. Med. 2024, 14, 598. [CrossRef] [31] Schalkamp, A.K.; Peall, K.J.; Harrison, N.A.; Sandor, C. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat. Med. 2023, 29, 2048–2056. [CrossRef] [32] Alonso, T.R.; Gagol, A.; Scherer, M.; Matji, A.; Torrado-Santiago, S.; Serrano, D.R.; Garcia-Arieta, A.; Torrado, J.J. A multivariate investigation into the relationship between pharmaceutical characteristics and patient preferences of bioequivalent ibuprofen tablets. Patient Prefer. Adherence 2018, 12, 1927–1935. [CrossRef] [33] Walsh, D.; Serrano, D.R.; Worku, Z.A.; Madi, A.M.; O’Connell, P.; Twamley, B.; Healy, A.M. Engineering of pharmaceutical cocrystals in an excipient matrix: Spray drying versus hot melt extrusion. Int. J. Pharm. 2018, 551, 241–256. [CrossRef] [34] Serrano, D.R.; Walsh, D.; O’Connell, P.; Mugheirbi, N.A.; Worku, Z.A.; Bolas-Fernandez, F.; Galiana, C.; Dea-Ayuela, M.A.; Healy, A.M. Optimising the in vitro and in vivo performance of oral cocrystal formulations via spray coating. Eur. J. Pharm. Biopharm. 2018, 124, 13–27. [CrossRef] [35] Lamy, B.; Tewes, F.; Serrano, D.R.; Lamarche, I.; Gobin, P.; Couet, W.; Healy, A.M.; Marchand, S. New aerosol formulation to control ciprofloxacin pulmonary concentration. J. Control. Release 2018, 271, 118–126. [CrossRef] [36] Gholap, A.D.; Uddin, M.J.; Faiyazuddin, M.; Omri, A.; Gowri, S.; Khalid, M. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Comput. Biol. Med. 2024, 178, 108702. [CrossRef] [37] Aundhia, C.; Parmar, G.; Talele, C.; Shah, N.; Talele, D. Impact of Artificial Intelligence on Drug Development and Delivery. Curr. Top. Med. Chem. 2024; in press. [CrossRef] [38] Lou, H.; Lian, B.; Hageman, M.J. Applications of Machine Learning in Solid Oral Dosage Form Development. J. Pharm. Sci. 2021, 110, 3150–3165. [CrossRef] [39] Momeni, M.; Afkanpour, M.; Rakhshani, S.; Mehrabian, A.; Tabesh, H. A prediction model based on artificial intelligence techniques for disintegration time and hardness of fast disintegrating tablets in pre-formulation tests. BMC Med. Inform. Decis. Mak. 2024, 24, 88. [CrossRef] [40] Serrano, D.R.; Kara, A.; Yuste, I.; Luciano, F.C.; Ongoren, B.; Anaya, B.J.; Molina, G.; Diez, L.; Ramirez, B.I.; Ramirez, I.O.; et al. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics 2023, 15, 313. [CrossRef] [41] Konta, A.A.; Garcia-Pina, M.; Serrano, D.R. Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful? Bioengineering 2017, 4, 79. [CrossRef] [42] Yuste, I.; Luciano, F.C.; Anaya, B.J.; Sanz-Ruiz, P.; Ribed-Sanchez, A.; Gonzalez-Burgos, E.; Serrano, D.R. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics 2023, 12, 1229. [CrossRef] [43] Anaya, B.J.; Cerda, J.R.; D’Atri, R.M.; Yuste, I.; Luciano, F.C.; Kara, A.; Ruiz, H.K.; Ballesteros, M.P.; Serrano, D.R. Engineering of 3D printed personalized polypills for the treatment of the metabolic syndrome. Int. J. Pharm. 2023, 642, 123194. [CrossRef] [44] Malebari, A.M.; Kara, A.; Khayyat, A.N.; Mohammad, K.A.; Serrano, D.R. Development of Advanced 3D-Printed Solid Dosage Pediatric Formulations for HIV Treatment. Pharmaceuticals 2022, 15, 435. [CrossRef] [PubMed] [45] Ayyoubi, S.; Cerda, J.R.; Fernandez-Garcia, R.; Knief, P.; Lalatsa, A.; Healy, A.M.; Serrano, D.R. 3D printed spherical mini-tablets: Geometry versus composition effects in controlling dissolution from personalised solid dosage forms. Int. J. Pharm. 2021, 597, 120336. [CrossRef] [PubMed] [46] Cerda, J.R.; Arifi, T.; Ayyoubi, S.; Knief, P.; Ballesteros, M.P.; Keeble, W.; Barbu, E.; Healy, A.M.; Lalatsa, A.; Serrano, D.R. Personalised 3D Printed Medicines: Optimising Material Properties for Successful Passive Diffusion Loading of Filaments for Fused Deposition Modelling of Solid Dosage Forms. Pharmaceutics 2020, 12, 345. [CrossRef] [47] Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023, 15, 1916. [CrossRef] [PubMed] [48] Obeid, S.; Madzarevic, M.; Krkobabic, M.; Ibric, S. Predicting drug release from diazepam FDM printed tablets using deep learning approach: Influence of process parameters and tablet surface/volume ratio. Int. J. Pharm. 2021, 601, 120507. [CrossRef] [PubMed] [49] Alhijjaj, M.; Nasereddin, J.; Belton, P.; Qi, S. Impact of Processing Parameters on the Quality of Pharmaceutical Solid Dosage Forms Produced by Fused Deposition Modeling (FDM). Pharmaceutics 2019, 11, 633. [CrossRef] [50] Elbadawi, M.; McCoubrey, L.E.; Gavins, F.K.H.; Ong, J.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv. Drug Deliv. Rev. 2021, 175, 113805. [CrossRef] [51] Chen, S.; Li, T.; Yang, L.; Zhai, F.; Jiang, X.; Xiang, R.; Ling, G. Artificial intelligence-driven prediction of multiple drug interactions. Brief. Bioinform. 2022, 23, bbac427. [CrossRef] [52] Patel, S.; Patel, M.; Kulkarni, M.; Patel, M.S. DE-INTERACT: A machine-learning-based predictive tool for the drug-excipient interaction study during product development-Validation through paracetamol and vanillin as a case study. Int. J. Pharm. 2023, 637, 122839. [CrossRef] [53] Matji, A.; Donato, N.; Gagol, A.; Morales, E.; Carvajal, L.; Serrano, D.R.; Worku, Z.A.; Healy, A.M.; Torrado, J.J. Predicting the critical quality attributes of ibuprofen tablets via modelling of process parameters for roller compaction and tabletting. Int. J. Pharm. 2019, 565, 209–218. [CrossRef] [54] Mansuri, A.; Volkel, M.; Mihiranga, D.; Feuerbach, T.; Winck, J.; Vermeer, A.W.P.; Hoheisel, W.; Thommes, M. Predicting self-diffusion coefficients in semi-crystalline and amorphous solid dispersions using free volume theory. Eur. J. Pharm. Biopharm. 2023, 190, 107–120. [CrossRef] [PubMed] [55] Bolger, M.B. Perspective on a chemistry classification system for AI-assisted formulation development. J. Control. Release 2022, 352, 833–839. [CrossRef] [PubMed] [56] Alqarni, M.; Namazi, N.I.; Alshehri, S.; Naguib, I.A.; Alsubaiyel, A.M.; Venkatesan, K.; Elmokadem, E.M.; Pishnamazi, M.; Abourehab, M.A.S. Solubility Optimization of Loxoprofen as a Nonsteroidal Anti-Inflammatory Drug: Statistical Modeling and Optimization. Molecules 2022, 27, 4357. [CrossRef] [57] Obrezanova, O. Artificial intelligence for compound pharmacokinetics prediction. Curr. Opin. Struct. Biol. 2023, 79, 102546. [CrossRef] [PubMed] [58] Ghayoor, A.; Kohan, H.G. Revolutionizing pharmacokinetics: The dawn of AI-powered analysis. J. Pharm. Pharm. Sci. 2024, 27, 12671. [CrossRef] [PubMed] [59] Fernandez-Garcia, R.; Lalatsa, A.; Statts, L.; Bolas-Fernandez, F.; Ballesteros, M.P.; Serrano, D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020, 573, 118817. [CrossRef] [60] Smith, L.; Serrano, D.R.; Mauger, M.; Bolas-Fernandez, F.; Dea-Ayuela, M.A.; Lalatsa, A. Orally Bioavailable and Effective Buparvaquone Lipid-Based Nanomedicines for Visceral Leishmaniasis. Mol. Pharm. 2018, 15, 2570–2583. [CrossRef] [61] Pineros, I.; Slowing, K.; Serrano, D.R.; de Pablo, E.; Ballesteros, M.P. Analgesic and anti-inflammatory controlled-released injectable microemulsion: Pseudo-ternary phase diagrams, in vitro, ex vivo and in vivo evaluation. Eur. J. Pharm. Sci. 2017, 101, 220–227. [CrossRef] [62] Serrano, D.R.; Lalatsa, A.; Dea-Ayuela, M.A.; Bilbao-Ramos, P.E.; Garrett, N.L.; Moger, J.; Guarro, J.; Capilla, J.; Ballesteros, M.P.; Schatzlein, A.G.; et al. Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol. Pharm. 2015, 12, 420–431. [CrossRef] [63] Serrano, D.R.; Gallagher, K.H.; Healy, A.M. Emerging Nanonisation Technologies: Tailoring Crystalline Versus Amorphous Nanomaterials. Curr. Top. Med. Chem. 2015, 15, 2327–2340. [CrossRef] [64] Torrado, J.J.; Serrano, D.R.; Uchegbu, I.F. The oral delivery of amphotericin B. Ther. Deliv. 2013, 4, 9–12. [CrossRef] [PubMed] [65] Lalatsa, A.; Statts, L.; Adriana de Jesus, J.; Adewusi, O.; AuxiliadoraDea-Ayuela, M.; Bolas-Fernandez, F.; DalastraLaurenti, M.; Felipe DominguesPassero, L.; Serrano, D.R. Topical buparvaquonenano-enabled hydrogels for cutaneous leishmaniasis. Int. J. Pharm. 2020, 588, 119734. [CrossRef] [PubMed] [66] Fernandez-Garcia, R.; Prada, M.; Bolas-Fernandez, F.; Ballesteros, M.P.; Serrano, D.R. Oral Fixed-Dose Combination Pharmaceutical Products: Industrial Manufacturing Versus Personalized 3D Printing. Pharm. Res. 2020, 37, 132. [CrossRef] [67] Bezerra-Souza, A.; Fernandez-Garcia, R.; Rodrigues, G.F.; Bolas-Fernandez, F.; DalastraLaurenti, M.; Passero, L.F.; Lalatsa, A.; Serrano, D.R. Repurposing Butenafine as An Oral Nanomedicine for Visceral Leishmaniasis. Pharmaceutics 2019, 11, 353. [CrossRef] [PubMed] [68] Serrano, D.R.; Hernandez, L.; Fleire, L.; Gonzalez-Alvarez, I.; Montoya, A.; Ballesteros, M.P.; Dea-Ayuela, M.A.; Miro, G.; BolasFernandez, F.; Torrado, J.J. Hemolytic and pharmacokinetic studies of liposomal and particulate amphotericin B formulations. Int. J. Pharm. 2013, 447, 38–46. [CrossRef [69] ]Fernandez-Garcia, R.; Munoz-Garcia, J.C.; Wallace, M.; Fabian, L.; Gonzalez-Burgos, E.; Gomez-Serranillos, M.P.; Raposo, R.; Bolas-Fernandez, F.; Ballesteros, M.P.; Healy, A.M.; et al. Self-assembling, supramolecular chemistry and pharmacology of amphotericin B: Poly-aggregates, oligomers and monomers. J. Control. Release 2022, 341, 716–732. [CrossRef [70] Serrano, D.R.; Ruiz-Saldana, H.K.; Molero, G.; Ballesteros, M.P.; Torrado, J.J. A novel formulation of solubilised amphotericin B designed for ophthalmic use. Int. J. Pharm. 2012, 437, 80–82. [CrossRef] [71] . Das, K.P.; J, C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Front. Med. Technol. 2022, 4, 1067144. [CrossRef] [72] Adir, O.; Poley, M.; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; Lammers, T.; Schroeder, A. Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Adv. Mater. 2020, 32, e1901989. [CrossRef] [73] Kara, A.; Vassiliadou, A.; Ongoren, B.; Keeble, W.; Hing, R.; Lalatsa, A.; Serrano, D.R. Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines. Pharmaceutics 2021, 13, 2134. [CrossRef] [PubMed] [74] Ongoren, B.; Kara, A.; Casettari, L.; Tiboni, M.; Lalatsa, A.; Sanz-Perez, A.; Gonzalez-Burgos, E.; Romero, A.; Juberias, A.; Torrado, J.J.; et al. Leveraging 3D-printed microfluidic micromixers for the continuous manufacture of melatonin loaded SNEDDS with enhanced antioxidant activity and skin permeability. Int. J. Pharm. 2024, 663, 124536. [CrossRef] [PubMed] [75] Liu, L.; Bi, M.; Wang, Y.; Liu, J.; Jiang, X.; Xu, Z.; Zhang, X. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 2021, 13, 19352–19366. [CrossRef] [PubMed] [76] Goda, K.; Lu, H.; Fei, P.; Guck, J. Revolutionizing microfluidics with artificial intelligence: A new dawn for lab-on-a-chip technologies. Lab Chip 2023, 23, 3737–3740. [CrossRef] [PubMed] [77] Fang, W.Z.; Xiong, T.; Pak, O.S.; Zhu, L. Data-Driven Intelligent Manipulation of Particles in Microfluidics. Adv. Sci. 2023, 10, e2205382. [CrossRef] [PubMed] [78] Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [CrossRef] [PubMed] [79] McKinsey. How Artificial Intelligence Can Power Clinical Development. Available online: https://www.mckinsey.com/ industries/life-sciences/our-insights/how-artificial-intelligence-can-power-clinical-development (accessed on 6 October 2024). [80] Buntz, B. 6 Signs AI Momentum in Drug Discovery Is Building. Available online: https://www.drugdiscoverytrends.com/sixsigns-ai-driven-drug-discovery-trends-pharma-industry (accessed on 6 October 2024). [81] AstraZeneca AI Models. Available online: https://www.astrazeneca.com/what-science-can-do/topics/data-science-ai/howdata-and-ai-are-helping-unlock-the-secrets-of-disease.html# (accessed on 14 August 2024). [82] Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [CrossRef] [PubMed] [83] Exscientia. Available online: https://www.exscientia.com/pipeline (accessed on 14 August 2024). [84] RXn for Chemistry. Available online: https://rxn.app.accelerate.science/rxn/home (accessed on 14 August 2024). [85] Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C.A.; Bekas, C.; Lee, A.A. Molecular Transformer: A Model for UncertaintyCalibrated Chemical Reaction Prediction. ACS Central Sci. 2019, 5, 1572–1583. [CrossRef] [PubMed] [86] Zheng, S.; Rao, J.; Zhang, Z.; Xu, J.; Yang, Y. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks. J. Chem. Inf. Model. 2020, 60, 47–55. [CrossRef] [PubMed] [87] Jiang, Y.; Yu, V.; Kong, M.; Mei, Y.; Yuan, L.; Huang, Z.; Kuang, K.; Wang, K.; Yao, H.; Zou, J.; et al. Artificial Intelligence for Retrosynthesis Prediction. Engineering 2023, 25, 32–50. [CrossRef] [88] Back, S.; Aspuru-Guzik, A.; Ceriotti, M.; Gryn’ova, G.; Grzybowski, B.; Gu, G.H.; Hein, J.; Hippalgaonkar, K.; Hormazabal, R.; Jung, Y.; et al. Accelerated chemical science with AI. Digit. Discov. 2024, 3, 23–33. [CrossRef] [89] 129. Segler, M.H.S.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018, 555, 604–610. [CrossRef] [PubMed] [90] Gromski, P.S.; Grnada, J.M.; Cronin, L. Universal Chemical Synthesis and Discovery with ‘The Chemputer’. Trends Chem. 2020, 2, 4–12. [CrossRef] [91] Leonov, A.I.; Hammer, A.J.S.; Lach, S.; Mehr, S.H.M.; Caramelli, D.; Angelone, D.; Khan, A.; O’Sullivan, S.; Craven, M.; Wilbraham, L.; et al. An integrated self- [92] optimizing programmable chemical synthesis and reaction engine. Nat. Commun. 2024, 15, 1240. [CrossRef] [PubMed] [93] Sharma, A.; Virmani, T.; Pathak, V.; Sharma, A.; Pathak, K.; Kumar, G.; Pathak, D. Artificial Intelligence-Based Data-Driven Strategy to Accelerate Research, Development, and Clinical Trials of COVID Vaccine. BioMed Res. Int. 2022, 2022, 7205241. [CrossRef] [PubMed] [94] Peckham, O. Pfizer Discusses Use of Supercomputing and AI for Covid Drug Development. Available online: https:// www.hpcwire.com/2022/03/24/pfizer-discusses-use-of-supercomputing-and-ai-for-covid-drug-development (accessed on 14 August 2024). [95] Lee, S.L.; O’Connor, T.F.; Yang, X.; Cruz, C.N.; Chatterjee, S.; Madurawe, R.D.; Moore, C.M.V.; Yu, L.X.; Woodcock, J. Modernizing Pharmaceutical Manufacturing: From Batch to Continuous Production. J. Pharm. Innov. 2015, 10, 191–199. [CrossRef] [96] Roggo, Y.; Jelsch, M.; Heger, P.; Ensslin, S.; Krumme, M. Deep learning for continuous manufacturing of pharmaceutical solid dosage form. Eur. J. Pharm. Biopharm. 2020, 153, 95–105. [CrossRef] [97] Johnson & Johnson Digital Twins. Available online: https://consumergoods.com/johnson-johnson-digs-deeper-data-unlockproduct-innovation (accessed on 14 August 2024). [98] Kavasidis, I.; Lallas, E.; Gerogiannis, V.C.; Charitou, T.; Karageorgos, A. Predictive maintenance in pharmaceutical manufacturing lines using deep transformers. ProcediaComput. Sci. 2023, 220, 576583. [CrossRef] [99] Pzifer Preventive Mainteinance AI. Available online: https://www.ge.com/digital/customers/pfizer-cuts-downtime-movingpredictive-maintenance (accessed on 14 August 2024). [100] Novartis Supply Chain. Available online: https://www.novartis.com/sites/novartis_com/files/novartis-responsible-use-of-aisystems.pdf (accessed on 15 August 2024). [101] Bayer Global. AI-Driven Thencology. Available online: https://www.bayer.com/en/pharma/artificial-intelligence#4 (accessed on 14 August 2024). 141. Liu, J.; Du, H.; Huang, L.; Xie, W.; Liu, K.; Zhang, X.; Chen, S.; Zhang, Y.; Li, D.; Pan, H. AI-Powered Microfluidics: Shaping the Future of Phenotypic Drug Discovery. ACS Appl. Mater. Interfaces 2024, 16, 38832–38851. [CrossRef] [102] Moingeon, P. Harnessing the power of AI-based models to accelerate drug discovery against immune diseases. Expert Rev. Clin. Immunol. 2024, 20, 1135–1138. [CrossRef] [103] Shen, C.; Song, J.; Hsieh, C.Y.; Cao, D.; Kang, Y.; Ye, W.; Wu, Z.; Wang, J.; Zhang, O.; Zhang, X.; et al. DrugFlow: An AI-Driven One-Stop Platform for Innovative Drug Discovery. J. Chem. Inf. Model. 2024, 64, 5381–5391. [CrossRef] [104] Khan, M.K.; Raza, M.; Shahbaz, M.; Hussain, I.; Khan, M.F.; Xie, Z.; Shah, S.S.A.; Tareen, A.K.; Bashir, Z.; Khan, K. The recent advances in the approach of artificial intelligence (AI) towards drug discovery. Front. Chem. 2024, 12, 1408740. [CrossRef] [PubMed] [105] Abbas, M.K.G.; Rassam, A.; Karamshahi, F.; Abunora, R.; Abouseada, M. The Role of AI in Drug Discovery. Chembiochem 2024, 25, e202300816. [CrossRef] [PubMed] [106] Gangwal, A.; Lavecchia, A. Unleashing the power of generative AI in drug discovery. Drug Discov. Today 2024, 29, 103992. [CrossRef] [PubMed] [107] Thuault, S. Drug discovery by AI trained on aging biology. Nat. Aging 2024, 4, 437. [CrossRef] [PubMed] [108] Mullard, A. When can AI deliver the drug discovery hits? Nat. Rev. Drug Discov. 2024, 23, 159–161. [CrossRef] [109] Iyer, J.S.; Juyal, D.; Le, Q.; Shanis, Z.; Pokkalla, H.; Pouryahya, M.; Pedawi, A.; Stanford-Moore, S.A.; Biddle-Snead, C.; CarrascoZevallos, O.; et al. AI-based automation of enrollment criteria and endpoint assessment in clinical trials in liver diseases. Nat. Med. 2024, 1–10. [CrossRef] Pharmaceutics 2024, 16, 1328 26 of 27 [110] Goldberg, J.M.; Amin, N.P.; Zachariah, K.A.; Bhatt, A.B. The Introduction of AI Into Decentralized Clinical Trials: Preparing for a Paradigm Shift. JACC Adv. 2024, 3, 101094. [CrossRef] [PubMed] [111] Wu, H.; Sun, Z.; Guo, Q.; Liu, X.; Cheng, K.; Li, C. Generative AI intervention clinical trials: A call for pre-registration (Correspondence). Int. J. Surg. 2024, 110, 5926–5927. [CrossRef] [112] Li, Z.; Liu, X.; Cheng, Z.; Chen, Y.; Tu, W.; Su, J. TrialView: An AI-powered Visual Analytics System for Temporal Event Data in Clinical Trials. Proc. Annu. Hawaii Int. Conf. Syst. Sci. 2024, 2024, 1169–1178. [PubMed] [PubMed Central] 153. Hutson, M. How AI is being used to accelerate clinical trials. Nature 2024, 627, S2–S5. [CrossRef] [PubMed] [113] Chopra, H.; Annu; Shin, D.K.; Munjal, K.; Priyanka; Dhama, K.; Emran, T.B. Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs. Int. J. Surg. 2023, 109, 4211–4220. [CrossRef] [PubMed] [114] Perni, S.; Lehmann, L.S.; Bitterman, D.S. Patients should be informed when AI systems are used in clinical trials. Nat. Med. 2023, 29, 1890–1891. [CrossRef] [PubMed] [115] 156. Balasundaram, A.; Stalin, C.; Ghanta, M.K. Views on artificial intelligence (AI) assisted clinical trials. Bioinformation 2021, 17, 616–622. [CrossRef] [PubMed] [116] Kolla, L.; Gruber, F.K.; Khalid, O.; Hill, C.; Parikh, R.B. The case for AI-driven cancer clinical trials-The efficacy arm in silico. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188572. [CrossRef] [117] Calaprice-Whitty, D.; Galil, K.; Salloum, W.; Zariv, A.; Jimenez, B. Improving Clinical Trial Participant Prescreening with Artificial Intelligence (AI): A Comparison of the Results of AI-Assisted vs Standard Methods in 3 Oncology Trials. Ther. Innov. Regul. Sci. 2020, 54, 69–74. [CrossRef] [118] Woo, M. An AI boost for clinical trials. Nature 2019, 573, S100–S102. [CrossRef] 160. Okati, L.; Lo, S.; Gnjidic, D.; Li, S.J.; Thillainadesan, J. Mobile applications on app stores for deprescribing: A scoping review. Br. J. Clin. Pharmacol. 2024. [CrossRef] [119] Askr, H.; Elgeldawi, E.; Aboul Ella, H.; Elshaier, Y.; Gomaa, M.M.; Hassanien, A.E. Deep learning in drug discovery: An integrative review and future challenges. Artif. Intell. Rev. 2023, 56, 5975–6037. [CrossRef] [120] Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022, 35, 23–32. [CrossRef] [121] Bess, A.; Berglind, F.; Mukhopadhyay, S.; Brylinski, M.; Griggs, N.; Cho, T.; Galliano, C.; Wasan, K.M. Artificial intelligence for the discovery of novel antimicrobial agents for emerging infectious diseases. Drug Discov. Today 2022, 27, 1099–1107. [CrossRef] [122] Bhalla, S.; Lagana, A. Artificial Intelligence for Precision Oncology. Adv. Exp. Med. Biol. 2022, 1361, 249–268. [CrossRef] [PubMed] [123] Brasil, S.; Allocca, M.; Magrinho, S.C.M.; Santos, I.; Raposo, M.; Francisco, R.; Pascoal, C.; Martins, T.; Videira, P.A.; Pereira, F.; et al. Systematic Review: Drug Repositioning for Congenital Disorders of Glycosylation (CDG). Int. J. Mol. Sci. 2022, 23, 8725. [CrossRef] [PubMed] [124] Chopra, H.; Baig, A.A.; Gautam, R.K.; Kamal, M.A. Application of Artificial Intelligence in Drug Discovery. Curr. Pharm. Des. 2022, 28, 2690–2703. [CrossRef] [PubMed] [125] Clarke, S.L.; Parmesar, K.; Saleem, M.A.; Ramanan, A.V. Future of machine learning in paediatrics. Arch. Dis. Child. 2022, 107, 223–228. [CrossRef] [126] Danishuddin; Kumar, V.; Faheem, M.; Woo Lee, K. A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug Discov. Today 2022, 27, 529–537. [CrossRef] [127] Deng, J.; Yang, Z.; Ojima, I.; Samaras, D.; Wang, F. Artificial intelligence in drug discovery: Applications and techniques. Brief. Bioinform. 2022, 23, bbab430. [CrossRef] [128] Dhakal, A.; McKay, C.; Tanner, J.J.; Cheng, J. Artificial intelligence in the prediction of protein-ligand interactions: Recent advances and future directions. Brief. Bioinform. 2022, 23, bbab476. [CrossRef] [129] Gonsard, A.; AbouTaam, R.; Prevost, B.; Roy, C.; Hadchouel, A.; Nathan, N.; Taytard, J.; Pirojoc, A.; Delacourt, C.; Wanin, S.; et al. Children’s views on artificial intelligence and digital twins for the daily management of their asthma: A mixed-method study. Eur. J. Pediatr. 2023, 182, 877–888. [CrossRef] [130] Vidovszky, A.A.; Fisher, C.K.; Loukianov, A.D.; Smith, A.M.; Tramel, E.W.; Walsh, J.R.; Ross, J.L. Increasing acceptance of AI-generated digital twins through clinical trial applications. Clin. Transl. Sci. 2024, 17, e13897. [CrossRef] [131] 173. Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. Sensors 2021, 21, 6340. [CrossRef] [132] Roche, V.; Robert, J.P.; Salam, H. A holistic AI-based approach for pharmacovigilance optimization from patients behavior on social media. Artif. Intell. Med. 2023, 144, 102638. [CrossRef] [PubMed] [133] Xu, X.; Mazloom, R.; Goligerdian, A.; Staley, J.; Amini, M.; Wyckoff, G.J.; Riviere, J.; Jaberi-Douraki, M. Making Sense of Pharmacovigilance and Drug Adverse Event Reporting: Comparative Similarity Association Analysis Using AI Machine Learning Algorithms in Dogs and Cats. Top. Companion Anim. Med. 2019, 37, 100366. [CrossRef] [134] Ball, R.; Dal Pan, G. “Artificial Intelligence” for Pharmacovigilance: Ready for Prime Time? Drug Saf. 2022, 45, 429–438. [CrossRef] [PubMed] [135] An, G.; Cockrell, C. Drug Development Digital Twins for Drug Discovery, Testing and Repurposing: A Schema for Requirements and Development. Front. Syst. Biol. 2022, 2, 928387. [CrossRef] [PubMed] [136] Hill, D.L.G. AI in imaging: The regulatory landscape. Br. J. Radiol. 2024, 97, 483–491. [CrossRef] Pharmaceutics 2024, 16, 1328 27 of 27 [137] Derraz, B.; Breda, G.; Kaempf, C.; Baenke, F.; Cotte, F.; Reiche, K.; Kohl, U.; Kather, J.N.; Eskenazy, D.; Gilbert, S. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. NPJ Precis. Oncol. 2024, 8, 23. [CrossRef] [138] vanKolfschooten, H. The AI cycle of health inequity and digital ageism: Mitigating biases through the EU regulatory framework on medical devices. J. Law Biosci. 2023, 10, lsad031. [CrossRef] [PubMed] [139] Samaan, J.S.; Yeo, Y.H.; Rajeev, N.; Ng, W.H.; Srinivasan, N.; Samakar, K. Towards Responsible AI in Patient Education: Ethical, Linguistic, and Regulatory Considerations. Obes. Surg. 2023, 33, 4160–4161. [CrossRef] [PubMed] [140] Townsend, B.A.; Sihlahla, I.; Naidoo, M.; Naidoo, S.; Donnelly, D.L.; Thaldar, D.W. Mapping the regulatory landscape of AI in healthcare in Africa. Front. Pharmacol. 2023, 14, 1214422. [CrossRef] [141] Mesko, B.; Topol, E.J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit. Med. 2023, 6, 120. [CrossRef] [142] Petrick, N.; Chen, W.; Delfino, J.G.; Gallas, B.D.; Kang, Y.; Krainak, D.; Sahiner, B.; Samala, R.K. Regulatory considerations for medical imaging AI/ML devices in the United States: Concepts and challenges. J. Med. Imaging 2023, 10, 051804. [CrossRef] [PubMed] [143] Connor, S.; Li, T.; Roberts, R.; Thakkar, S.; Liu, Z.; Tong, W. Adaptability of AI for safety evaluation in regulatory science: A case study of drug-induced liver injury. Front. Artif. Intell. 2022, 5, 1034631. [CrossRef] [PubMed] [144] O’Sullivan, S.; Nevejans, N.; Allen, C.; Blyth, A.; Leonard, S.; Pagallo, U.; Holzinger, K.; Holzinger, A.; Sajid, M.I.; Ashrafian, H. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e1968. [CrossRef] [PubMed] [145] The HIPAA Privacy Rule. Available online: https://www.hhs.gov/hipaa/for-professionals/privacy/index.html (accessed on 6 October 2024). [146] FDA’s Digital Health Innovation Plan. Available online: https://www.fda.gov/media/106331/download (accessed on 14 August 2024). 189. AI Regulation in Europe. Available online: https://www.consilium.europa.eu/es/policies/artificial-intelligence (accessed on 6 October 2024).Bai, F.; Li, S.; Li, H. AI enhances drug discovery and development. Natl. Sci. Rev. 2024, 11, nwad303. [CrossRef] [147] Hill, A.; True, J.M.; Jones, C.H. Transforming drug development with synthetic biology and AI. Trends Biotechnol. 2024, 42, 1072–1075. [CrossRef] [PubMed] [148] Niazi, S.K. The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Des. Dev. Ther. 2023, 17, 2691–2725. [CrossRef] [PubMed] [149] Barrett, J.S.; Oskoui, S.E.; Russell, S.; Borens, A. Digital Research Environment(DRE)-enabled Artificial Intelligence (AI) to facilitate early stage drug development. Front. Pharmacol. 2023, 14, 1115356. [CrossRef] [150] Luo, Y.; Peng, J.; Ma, J. Next Decade’s AI-Based Drug Development Features Tight Integration of Data and Computation. Heal. Data Sci. 2022, 2022, 9816939. [CrossRef] [151] Gallego, V.; Naveiro, R.; Roca, C.; Rios Insua, D.; Campillo, N.E. AI in drug development: A multidisciplinary perspective. Mol. Divers. 2021, 25, 1461–1479. [CrossRef] [PubMed]
Copyright © 2025 Yash Anil Chaudhari, Yash Bhatu Joshi , Karan Sanjay Patil , Devyani Ajaykumar Rathod , Mr. Shaikh Habiburrahman , Mr. Mohammed Awais , Mr. Saeed Ahmad , Mr. Sanaurrehman Momin . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Paper Id : IJRASET74553
Publish Date : 2025-10-09
ISSN : 2321-9653
Publisher Name : IJRASET
DOI Link : Click Here