Ijraset Journal For Research in Applied Science and Engineering Technology
Authors: Atiya Maqbool
DOI Link: https://doi.org/10.22214/ijraset.2025.66780
Certificate: View Certificate
Agricultural robotics is constantly evolving in an effort to address the problems caused by urbanisation, population increase, high cost of high-quality goods, environmental preservation, and shortage of skilled workers. The primary current applications of agricultural robotic systems are reviewed in this study, which include their use in land preparation prior to planting, sowing, planting, plant treatment, harvesting, yield calculation, and phenotyping. The criteria used to evaluate all robots include their locomotion system, intended use, whether they had sensors, robotic arm, or computer vision algorithm, level of development and the nation or continent to which they belong. Four key areas that require further research to advance the state of the art in smart agriculture were identified after evaluating all similar characteristics, exposing research trends, common pitfalls, and characteristics that impede commercial development. The findings of this review indicate that investment in agricultural robotic systems enables the achievement of short-term goals (harvest monitoring) and long-term goals (yield estimation).
The UN identifies global population growth—expected to rise from 7.6 billion to 9.8 billion by 2050—as a shared concern for all 193 member nations.
Half of this growth will occur in just nine countries, including India and Nigeria.
Increasing urbanization (68% urban by 2050) and a shift in consumer preference for pesticide-free, high-quality food is pressuring farmers to double food production.
Despite a slight increase in arable land (from 9.6% in 1991 to 10.7% in 2022), smaller growing spaces and a shortage of skilled labor call for innovative farming methods.
The COVID-19 pandemic exposed vulnerabilities in agriculture, especially in developing nations dependent on small-scale producers.
Wealthier countries face different challenges, such as youth migration to cities and low profitability in farming.
These conditions highlight the need for automation and technological solutions.
PA aims to optimize farming decisions per unit of land and time using technology to enhance efficiency, productivity, and sustainability.
Technologies include:
Robotics
Artificial Intelligence (AI)
Internet of Things (IoT)
Applications span monitoring, soil management, pest control, and more.
The PA market is projected to grow from $3.67 billion (2016) to $7.29 billion (2025).
Robots are transforming various farming stages:
Land Preparation: Robots like Casar, Greenbot, and UAVs like AGRAS MG-1P perform tasks such as fertilizing, ploughing, and spraying.
Navigation systems often use RTK GNSS for high-precision location tracking.
Obstacle detection via ultrasonic sensors, radar, and cameras ensure safe operation.
Research robots like AgBot use machine learning for weed detection.
Traditional heavy tractors compact soil, negatively affecting crop growth.
Robotic alternatives include:
Lumai-5 (China): Compact and sensor-rich for wheat fields.
Di-Wheel (Australia): Lightweight, modular, and uses smartphone sensors.
Sowing Robot 1 (Pakistan): Efficient corn planter, 5x faster than traditional methods.
Indian prototype: Uses tracked drives to minimize soil damage while carrying heavy loads.
Cost remains a major barrier to adoption, especially for small producers.
In order to determine the actual needs for changes, it is necessary to first understand the major existing works in the field of smart agriculture, highlighting their benefits, drawbacks, and typical faults before proposing new technical and scientific advancements. 37% of agricultural robotic systems are 4WD, 64.52% lack a robotic arm, 22.06% are used for weeding tasks, 32.23% use RGB cameras, 35.48% do not include/report computer vision algorithms, 80.65% are in the research stage, 16.67% are designed by Australian companies/researchers, and 41.94% are developed by countries on the European continent, according to a systematic review of agricultural robotic systems used in the execution of land preparation before planting, sowing, planting, plant treatment, harvesting, yield estimation, and phenotyping. Simple and effective computer vision algorithms, parallelism, the swarm of robots, the limited use of the off-the-shelf concept, and multipurpose platforms that suitably adjust to the crop type under study were the primary features noted. Four primary areas have been suggested for further research in order to enhance the current agricultural robotic systems: sensors, computer vision algorithms, locomotion systems, and Internet of Things-based smart agriculture. This study examined numerous agricultural robotic systems. Given that the average harvest success rate increased by 22.98% and the average harvesting robot cycle decreased by 42.78% between 2014 and 2021. Thus, it is anticipated that as the aforementioned areas improve, agricultural robotic systems will continue to advance in terms of efficiency and robustness. Therefore, it is thought that this work was able to correlate the benefits of investing in technologies that serve as instruments for changing nature in addition to demonstrating the noteworthy advancements in the field of mobile robots.
[1] Abares. Australian Vegetable Growing Farms: An Economic Survey, 2012-13 and 2013-14. 2014. Available online: https://data.gov.au/dataset/ds-dga-a00deb73-3fd1-4ae7-bc01-be5f37cffeee/details (accessed on 2 March 2021). [2] Abrahão, G.Q.S.; Megda, P.T.; Guerrero, H.B.; Becker, M. AgriBOT project: Comparison between the D* and focussed D* navigation algorithms. In Proceedings of the International Congress of Mechanical Engineering—COBEM, Natal, Brazil, 24–28 October 2011. [Google Scholar] [3] Abbas T, Khan VJ, Gadiraju U, Barakova E, Markopoulos P. Crowd of oz: a crowd-powered social robotics system for stress management. Sensors. 2020 Jan 20;20(2):569. [4] Abutalipov RN, Bolgov YV, Senov HM. Flowering plants pollination robotic system for greenhouses by means of nano copter (drone aircraft). In2016 IEEE conference on quality management, transport and information security, information technologies (IT&MQ&IS) 2016 Oct 4 (pp. 7-9). IEEE. [5] Anand R, Madhusudan BS, Bhalekar DG. Computer Vision and Agricultural Robotics for Disease Control. InApplications of Computer Vision and Drone Technology in Agriculture 4.0 2024 Mar 19 (pp. 31-47). Singapore: Springer Nature Singapore. [6] Adamides, G.; Katsanos, C.; Constantinou, I.; Christou, G.; Xenos, M.; Hadzilacos, T.; Edan, Y. Design and development of a semi-autonomous agricultural vineyard sprayer: Human–robot interaction aspects. J. Field Robot. 2017, 34, 1407–1426. [Google Scholar] [CrossRef] [7] Aguiar, A.S.; dos Santos, F.N.; Cunha, J.B.; Sobreira, H.; Sousa, A.J. Localization and Mapping for Robots in Agriculture and Forestry: A Survey. Robotics 2020, 9, 97. [Google Scholar] [CrossRef] [8] Al-Mashhadani Z, Chandrasekaran B. Survey of agricultural robot applications and implementation. In2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) 2020 Nov 4 (pp. 0076-0081). IEEE. [9] Arad, B.; Balendonck, J.; Barth, R.; Ben-Shahar, O.; Edan, Y.; Hellström, T.; Hemming, J.; Kurtser, P.; Ringdahl, O.; Tielen, T.; et al. Development of a sweet pepper harvesting robot. J. Field Robot. 2020, 37, 1027–1039. [Google Scholar] [CrossRef] [10] Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.M. Internet of Things (IoT) Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access 2019, 1. [Google Scholar] [CrossRef] [11] Bac, C.W.; Henten, E.J.v.; Hemming, J.; Edan, Y. Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead. J. Field Robot. 2014, 31. [Google Scholar] [CrossRef] [12] Bale AS, Varsha SN, Naidu AS, Vinay N, Tiwari S. Autonomous Aerial Robots Application for Crop Survey and Mapping. InPrecision Agriculture for Sustainability 2024 (pp. 123-145). Apple Academic Press. [13] Barnett J, Seabright M, Williams HA, Nejati M, Scarfe AJ, Bell J, Jones MH, Martinson P, Schaare P, Duke M. Robotic pollination-targeting kiwifruit flowers for commercial application. InPA17 international tri-conference for precision agriculture 2017. [14] Bargoti, S.; Underwood, J.P. Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards. J. Field Robot. 2017, 34, 1039–1060. [Google Scholar] [CrossRef] [Green Version] [15] Berenstein, R.; Edan, Y. Automatic Adjustable Spraying Device for Site-Specific Agricultural Application. IEEE Trans. Autom. Sci. Eng. 2018, 15, 641–650. [Google Scholar] [CrossRef] [16] Bergerman M, Billingsley J, Reid J, van Henten E. Robotics in agriculture and forestry. Springer handbook of robotics. 2016:1463-92. [17] Bender A, Whelan B, Sukkarieh S. A high?resolution, multimodal data set for agricultural robotics: A Ladybird\'s?eye view of Brassica. Journal of Field Robotics. 2020 Jan;37(1):73-96. [18] Birrell, S.; Hughes, J.; Cai, J.Y.; Iida, F. A field-tested robotic harvesting system for iceberg lettuce. J. Field Robot. 2020, 37, 225–245. [Google Scholar] [CrossRef] [PubMed] [Green Version] [19] Bloch V, Degani A, Bechar A. A methodology of orchard architecture design for an optimal harvesting robot. Biosystems Engineering. 2018 Feb 1;166:126-37. [20] Bogue, R. Robots poised to revolutionise agriculture. Ind. Robot Int. J. 2016, 43, 450–456. [Google Scholar] [CrossRef] [21] Botterill, T.; Paulin, S.; Green, R.; Williams, S.; Lin, J.; Saxton, V.; Mills, S.; Chen, X.; Corbett-Davies, S. A Robot System for Pruning Grape Vines. J. Field Robot. 2017, 34, 1100–1122. [Google Scholar] [CrossRef] [22] Buheji M, da Costa Cunha K, Beka G, Mavric B, De Souza YL, da Costa Silva SS, Hanafi M, Yein TC. The extent of covid-19 pandemic socio-economic impact on global poverty. a global integrative multidisciplinary review. American Journal of Economics. 2020 Aug 1;10(4):213-24. [23] Badeka E, Vrochidou E, Papakostas GA, Pachidis T, Kaburlasos VG. Harvest crate detection for grapes harvesting robot based on YOLOv3 model. In2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS) 2020 Oct 21 (pp. 1-5). IEEE. [24] Ceres, R.; Pons, J.; Jiménez, A.; Martín, J.; Calderón, L. Design and implementation of an aided fruit-harvesting robot (Agribot). Ind. Robot Int. J. 1998, 25, 337–346. [Google Scholar] [CrossRef] [25] CFBF. Still Searching for Solutions: Adapting to Farm Worker Scarcity Survey 2019. Available online: https://www.cfbf.com/wp-content/uploads/2019/06/LaborScarcity.pdf (accessed on 1 March 2021). [26] Chapman, S.C.; Merz, T.; Chan, A.; Jackway, P.; Hrabar, S.; Dreccer, M.F.; Holland, E.; Zheng, B.; Ling, T.J.; Jimenez-Berni, J. Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping. Agronomy 2014, 4, 279–301. [Google Scholar] [CrossRef] [Green Version] [27] Chang CL, Chen HW, Ke JY. Robust Guidance and Selective Spraying Based on Deep Learning for an Advanced Four-Wheeled Farming Robot. Agriculture. 2023 Dec 28;14(1):57. [28] Clabaugh C, Matari? M. Escaping oz: Autonomy in socially assistive robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2019 May 3;2(1):33-61. [29] Choi, K.H.; Han, S.K.; Han, S.H.; Park, K.H.; Kim, K.S.; Kim, S. Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields. Comput. Electron. Agric. 2015, 113, 266–274. [Google Scholar] [CrossRef] [30] Cui, F. Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment. Comput. Commun. 2020, 150, 818–827. [Google Scholar] [CrossRef] [31] Crocetti F, Bellocchio E, Dionigi A, Felicioni S, Costante G, Fravolini ML, Valigi P. ARD?VO: Agricultural robot data set of vineyards and olive groves. Journal of Field Robotics. 2023 Sep;40(6):1678-96. [32] Carpio RF, Potena C, Maiolini J, Ulivi G, Rosselló NB, Garone E, Gasparri A. A navigation architecture for ackermann vehicles in precision farming. IEEE Robotics and Automation Letters. 2020 Jan 17;5(2):1103-10. [33] Delardas O, Kechagias KS, Pontikos PN, Giannos P. Socio-economic impacts and challenges of the coronavirus pandemic (COVID-19): an updated review. Sustainability. 2022 Aug 6;14(15):9699. [34] DJI. AGRAS MG-1P SERIES: Innovative Insights. Increased Efficiency. Available online: https://www.dji.com/br/mg-1p (accessed on 8 March 2021). [35] Dong M, Fan W, Li J, Zhou X, Rong X, Kong Y, Zhou Y. A new ankle robotic system enabling whole-stage compliance rehabilitation training. IEEE/ASME transactions on mechatronics. 2020 Sep 7;26(3):1490-500. [36] Eiffert S, Wallace ND, Kong H, Pirmarzdashti N, Sukkarieh S. Experimental evaluation of a hierarchical operating framework for ground robots in agriculture. InExperimental Robotics: The 17th International Symposium 2021 (pp. 151-160). Springer International Publishing. [37] Engwall O, Lopes J, Cumbal R. Is a wizard-of-oz required for robot-led conversation practice in a second language?. International Journal of Social Robotics. 2022 Jun;14(4):1067-85. [38] Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Int. Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef] [39] Fankhauser, P. ANYmal C. 2020. Available online: https://www.anybotics.com/anymal-legged-robot/ [40] FAO. Keeping food and agricultural systems alive: Analyses and solutions in response to COVID-19. FAO 2020, 64. [Google Scholar] [CrossRef] [41] FAO. Keeping Plant Pests and Diseases at Bay: Experts Focus on Global Measures. Available online: http://www.fao.org/news/story/en/item/280489/icode/ [42] FAO. World Food and Agriculture—Statistical pocketbook 2019. FAO 2019, 1, 254. [Google Scholar] [43] Fu L, Gao F, Wu J, Li R, Karkee M, Zhang Q. Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review. Computers and Electronics in Agriculture. 2020 Oct 1;177:105687. [44] Farooq MU, Eizad A, Bae HK. Power solutions for autonomous mobile robots: A survey. Robotics and Autonomous Systems. 2023 Jan 1;159:104285. [45] Fountas, S.; Mylonas, N.; Malounas, I.; Rodias, E.; Hellmann Santos, C.; Pekkeriet, E. Agricultural Robotics for Field Operations. Sensors 2020, 20, 2672. [Google Scholar] [CrossRef] [46] Gai, J.; Tang, L.; Steward, B.L. Automated crop plant detection based on the fusion of color and depth images for robotic weed control. J. Field Robot. 2020, 37, 35–52. [Google Scholar] [CrossRef] [47] Gao, X.; Li, J.; Fan, L.; Zhou, Q.; Yin, K.; Wang, J.; Song, C.; Huang, L.; Wang, Z. Review of Wheeled Mobile Robots’ Navigation Problems and Application Prospects in Agriculture. IEEE Access 2018, 6, 49248–49268. [Google Scholar] [CrossRef] [48] Ge, Y.; Xiong, Y.; Tenorio, G.L.; From, P.J. Fruit Localization and Environment Perception for Strawberry Harvesting Robots. IEEE Access 2019, 7, 147642–147652. [Google Scholar] [CrossRef] [49] Gonzalez F, Zalewski J. Teaching joint-level robot programming with a new robotics software tool. Robotics. 2017 Dec 18;6(4):41. [50] Grimstad, L.; From, P.J. Thorvald II—A Modular and Re-configurable Agricultural Robot. IFAC-PapersOnLine 2017, 50, 4588–4593. [Google Scholar] [CrossRef] [51] He L, Schupp J. Sensing and automation in pruning of apple trees: A review. Agronomy. 2018 Sep 30;8(10):211. [52] Haibo, L.; Dong, S.; Zunmin, L.; Chuijie, Y. Study and Experiment on a Wheat Precision Seeding Robot. J. Robot. 2015, 1, 1–9. [Google Scholar] [CrossRef] [53] Hassan, M.U.; Ullah, M.; Iqbal, J. Towards autonomy in agriculture: Design and prototyping of a robotic vehicle with seed selector. In Proceedings of the 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), Los Angeles, CA, USA, 20–22 April 2016; pp. 37–44. [Google Scholar] [54] Hayashi, S.; Yamamoto, S.; Saito, S.; Ochiai, Y.; Kamata, J.; Kurita, M.; Yamamoto, K. Field Operation of a Movable Strawberry-harvesting Robot using a Travel Platform. Jpn. Agric. Res. Q. 2014, 48, 307–316. [Google Scholar] [CrossRef] [Green Version] [55] Hemming J, Balendonck J. Advances in the use of robotics in greenhouse cultivation. Burleigh Dodds Science Publishing; 2024 Mar 25. [56] Hammou NA, Mousannif H, Lakssir B. What is the status of weeding robots in the world since 2011 to 2021?. InAIP Conference Proceedings 2023 Jul 11 (Vol. 2814, No. 1). AIP Publishing. [57] Higuti, V.A.H.; Velasquez, A.E.B.; Magalhaes, D.V.; Becker, M.; Chowdhary, G. Under canopy light detection and ranging-based autonomous navigation. J. Field Robot. 2019, 36, 547–567. [Google Scholar] [CrossRef] [58] Iida, M.; Kang, D.; Taniwaki, M.; Tanaka, M.; Umeda, M. Localization of CO2 source by a hexapod robot equipped with an anemoscope and a gas sensor. Comput. Electron. Agric. 2008, 63, 73–80. [Google Scholar] [CrossRef] [59] Iqbal, J.; Xu, R.; Sun, S.; Li, C. Simulation of an Autonomous Mobile Robot for LiDAR-Based In-Field Phenotyping and Navigation. Robotics 2020, 9, 46. [Google Scholar] [CrossRef] [60] Jie, L.; Jiao, S.; Wang, X.; Wang, H. A new type of facility strawberry stereoscopic cultivation mode. J. China Agric. Univ. 2019, 24, 61–68. [Google Scholar] [61] Jorgensen, R.; Sorensen, C.; Maagaard, J.; Havn, I.; Jensen, K.; Sogaard, H.; Sorensen, L. HortiBot: A System Design of a Robotic Tool Carrier for High-tech Plant Nursing. CIGR J. Sci. Res. Dev. 2006, IX, 1–13. [Google Scholar] [62] Kang, H.; Zhou, H.; Chen, C. Visual Perception and Modeling for Autonomous Apple Harvesting. IEEE Access 2020, 8, 62151–62163. [Google Scholar] [CrossRef] [63] Karkee, M.; Adhikari, B.; Amatya, S.; Zhang, Q. Identification of pruning branches in tall spindle apple trees for automated pruning. Comput. Electron. Agric. 2014, 103, 127–135. [Google Scholar] [CrossRef] [64] Khan, N.; Medlock, G.; Graves, S.; Anwar, S. GPS Guided Autonomous Navigation of a Small Agricultural Robot with Automated Fertilizing System; SAE Technical Paper; SAE International: Warrendale PA, USA, 2018; Volume 1, p. 1. [Google Scholar] [CrossRef] [65] Kim, J.; Kim, S.; Ju, C.; Son, H.I. Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications. IEEE Access 2019, 7, 105100–105115. [Google Scholar] [CrossRef] [66] Kim K, Deb A, Cappelleri DJ. P-AgBot: In-row & under-canopy agricultural robot for monitoring and physical sampling. IEEE robotics and automation letters. 2022 Jun 29;7(3):7942-9. [67] Koleosho J, Saaj CM. System design and control of a di-wheel rover. InTowards Autonomous Robotic Systems: 20th Annual Conference, TAROS 2019, London, UK, July 3–5, 2019, Proceedings, Part II 20 2019 (pp. 409-421). Springer International Publishing. [68] Korostynska O, Mason A, From PJ. Electromagnetic sensing for non-destructive real-time fruit ripeness detection: Case-study for automated strawberry picking. InProceedings 2018 Dec 10 (Vol. 2, No. 13, p. 980). MDPI [69] Kusumam K, Krajník T, Pearson S, Duckett T, Cielniak G. 3D?vision based detection, localization, and sizing of broccoli heads in the field. Journal of Field Robotics. 2017 Dec;34(8):1505-18. [70] Lee, W.S.; Slaughter, D.C. Plant recognition using hardware-based neural network. In Proceedings of the 1998 ASAE Annual International Meeting, Orlando, FL, USA, 12–16 July 1998; pp. 1–14. [Google Scholar] [71] Lee, W.S.; Slaughter, D.C.; Giles, D.K. Robotic Weed Control System for Tomatoes. Precis. Agric. 1999, 1, 95–113. [Google Scholar] [CrossRef] [72] Lehnert, C.; English, A.; McCool, C.; Tow, A.W.; Perez, T. Autonomous Sweet Pepper Harvesting for Protected Cropping Systems. IEEE Robot. Autom. Lett. 2017, 2, 872–879. [Google Scholar] [CrossRef] [Green Version] [73] Lehnert, C.; McCool, C.; Sa, I.; Perez, T. Performance improvements of a sweet pepper harvesting robot in protected cropping environments. J. Field Robot. 2020, 37, 1197–1223. [Google Scholar] [CrossRef] [74] Leu, A.; Razavi, M.; Langstädtler, L.; Risti?-Durrant, D.; Raffel, H.; Schenck, C.; Gräser, A.; Kuhfuss, B. Robotic Green Asparagus Selective Harvesting. IEEE/ASME Trans. Mechatron. 2017, 22, 2401–2410. [Google Scholar] [CrossRef] [75] Lin HB, Yi CJ, Liu ZM. Experimental study on quadruped wheel robot for wheat precision seeding. Key Engineering Materials. 2016 Jun 20;693:1651-7. [76] Lopes, C.; Graça, J.; Sastre, J.; Reyes, M.; Guzman, R.; Braga, R.; Monteiro, A.; Pinto, P. Vineyard Yield Estimation by Vinbot Robot—Preliminary Results with the White Variety Viosinho. In Proceedings of the 11th International Terroir Congress, McMinnville, OR, USA, 10–14 July 2016. [Google Scholar] [CrossRef] [77] Lowe, T.; Moghadam, P.; Edwards, E.; Williams, J. Canopy density estimation in perennial horticulture crops using 3D spinning lidar SLAM. J. Field Robot. 2021. [Google Scholar] [CrossRef] [78] Lowenberg-DeBoer, J.; Erickson, B. Setting the Record Straight on Precision Agriculture Adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef] [Green Version] [79] Lugli, L.; Tronco, M.; Porto, V. JSEG Algorithm and Statistical ANN Image Segmentation Techniques for Natural Scenes. In Image Segmentation; IntechOpen: Rijeka, Croatia, 2011; Chapter 18. [Google Scholar] [CrossRef] [Green Version] [80] Lulio, L.C. Fusão Sensorial por ClassificaçãO Cognitiva Ponderada no Mapeamento de Cenas Naturais AgríColas para AnáLise Quali-Quantitativa em Citricultura. Ph.D. Thesis, Escola de Engenharia de São Carlos, Sao Paulo, Brazil, 2016. [Google Scholar] [81] Majeed, Y.; Karkee, M.; Zhang, Q.; Fu, L.; Whiting, M.D. Development and performance evaluation of a machine vision system and an integrated prototype for automated green shoot thinning in vineyards. J. Field Robot. 2021. [Google Scholar] [CrossRef] [82] Mahmud MS, Abidin MS, Emmanuel AA, Hasan HS. Robotics and automation in agriculture: present and future applications. Applications of Modelling and Simulation. 2020 Apr 3;4:130-40. [83] Mallas A, Xenos M, Rigou M. Evaluating a mouse-based and a tangible interface used for operator intervention on two autonomous robots. InInternational Conference on Human-Computer Interaction 2020 Jul 10 (pp. 668-678). Cham: Springer International Publishing. [84] Mandow, A.; Gomez-de-Gabriel, J.M.; Martinez, J.L.; Munoz, V.F.; Ollero, A.; Garcia-Cerezo, A. The autonomous mobile robot AURORA for greenhouse operation. IEEE Robot. Autom. Mag. 1996, 3, 18–28. [Google Scholar] [CrossRef] [Green Version] [85] McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future Directions of Precision Agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef] [86] McCool, C.; Beattie, J.; Firn, J.; Lehnert, C.; Kulk, J.; Bawden, O.; Russell, R.; Perez, T. Efficacy of Mechanical Weeding Tools: A Study Into Alternative Weed Management Strategies Enabled by Robotics. IEEE Robot. Autom. Lett. 2018, 3, 1184–1190. [Google Scholar] [CrossRef] [87] Megalingam, R.K.; Kuttankulangara Manoharan, S.; Mohan, S.M.; Vadivel, S.R.R.; Gangireddy, R.; Ghanta, S.; Kotte, S.; Perugupally, S.T.; Sivanantham, V. Amaran: An Unmanned Robotic Coconut Tree Climber and Harvester. IEEE/ASME Trans. Mechatron. 2020, 26, 288–299. [Google Scholar] [CrossRef] [88] Meivel, S.; Dinakaran, K.; Gandhiraj, N.; Srinivasan, M. Remote sensing for UREA Spraying Agricultural (UAV) system. In Proceedings of the 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 22–23 January 2016; Volume 1, pp. 1–6. [Google Scholar] [CrossRef] [89] Meshram AT, Vanalkar AV, Kalambe KB, Badar AM. Pesticide spraying robot for precision agriculture: A categorical literature review and future trends. Journal of Field Robotics. 2022 Mar;39(2):153-71. [90] Mitsui, T.; Kobayashi, T.; Kagiya, T.; Inaba, A.; Ooba, S. Verification of a Weeding Robot “AIGAMO-ROBOT” for Paddy Fields. J. Robot. Mechatron. 2008, 20, 228–233. [Google Scholar] [CrossRef] [91] Moreno H, Rueda-Ayala V, Ribeiro A, Bengochea-Guevara J, Lopez J, Peteinatos G, Valero C, Andújar D. Evaluation of vineyard cropping systems using on-board rgb-depth perception. Sensors. 2020 Dec 3;20(23):6912. [92] Nonami K, Kendoul F, Suzuki S, Wang W, Nakazawa D. Autonomous flying robots: unmanned aerial vehicles and micro aerial vehicles. Springer Science & Business Media; 2010 Sep 15. [93] Nakamura K, Ogawa J, Naruse K. Investigation for Prior Path of Sweeping Robot Considering Environmental Disturbance. InProceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications 2019 Jul 31 (Vol. 2019, pp. 188-194). The ISCIE Symposium on Stochastic Systems Theory and Its Applications. [94] Nawaz, M.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling: A review. Agron. Sustain. Dev. 2012, 33. [Google Scholar] [CrossRef] [Green Version] [95] Neumann, G.B.; Almeida, V.P.; Endler, M. Smart Forests: Fire detection service. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 01276–01279. [Google Scholar] [96] Noguchi, N.; Reid, J.; Benson, E.; Stombaugh, T. Vision Intelligence for an Agricultural Mobile Robot Using a Neural Network. IFAC Proc. Vol. 1998, 31, 139–144. [Google Scholar] [CrossRef] [97] Noguchi, N.; Reid, J.F.; Ishii, K.; Terao, H. Multi-Spectrum Image Sensor for Detecting Crop Status by Robot Tractor. IFAC Proc. Vol. 2001, 34, 111–115. [Google Scholar] [CrossRef] [98] Onishi Y, Yoshida T, Kurita H, Fukao T, Arihara H, Iwai A. An automated fruit harvesting robot by using deep learning. Robomech Journal. 2019 Dec;6(1):1-8. [99] Oliveira, L.F.P.; Manera, L.T.; Luz, P.D.G. Development of a Smart Traffic Light Control System with Real-Time Monitoring. IEEE Int. Things J. 2020, 1. [Google Scholar] [CrossRef] [100] Oliveira, L.F.P.; Manera, L.T.; Luz, P.D.G. Smart Traffic Light Controller System. In Proceedings of the Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 22–25 October 2019; pp. 155–160. [Google Scholar] [101] Oliveira, L.F.P.; Rossini, F.L. Modeling, Simulation and Analysis of Locomotion Patterns for Hexapod Robots. IEEE Latin Am. Trans. 2018, 16, 375–383. [Google Scholar] [CrossRef] [102] Oliveira, L.F.P.; Silva, M.F.; Moreira, A.P. Agricultural Robotics: A State of the Art Survey. In Proceedings of the 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2020), Moscow, Russian, 24–26 August 2021; pp. 279–286. [Google Scholar] [CrossRef] [103] Onwude DI, Abdulstter R, Gomes C, Hashim N. Mechanisation of large?scale agricultural fields in developing countries–a review. Journal of the Science of Food and Agriculture. 2016 Sep;96(12):3969-76. [104] Pulgarín Correa S. Design, Construction, and Control of a 3d printed Diwheel prototype.2024. [105] Paul K, Chatterjee SS, Pai P, Varshney A, Juikar S, Prasad V, Bhadra B, Dasgupta S. Viable smart sensors and their application in data driven agriculture. Computers and Electronics in Agriculture. 2022 Jul 1;198:107096. [106] Pilli, S.K.; Nallathambi, B.; George, S.J.; Diwanji, V. eAGROBOT—A robot for early crop disease detection using image processing. In Proceedings of the 2015 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015; pp. 1684–1689. [Google Scholar] [107] Reis, R.; Mendes, J.; Santos, F.N.; Morais, R.; Ferraz, N.; Santos, L.; Sousa, A. Redundant robot localization system based in wireless sensor network. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 154–159. [Google Scholar] [108] Robert, B. Fruit picking robots: Has their time come? Ind. Robot. Int. J. Robot. Res. Appl. 2020, 47, 141–145. [Google Scholar] [CrossRef] [109] Raikwar S, Fehrmann J, Herlitzius T. Navigation and control development for a four-wheel-steered mobile orchard robot using model-based design. Computers and Electronics in Agriculture. 2022 Nov 1;202:107410. [110] Rajak P, Ganguly A, Adhikary S, Bhattacharya S. Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research. 2023 Dec 1;14:100776. [111] Singh G, Sharma S. A comprehensive review on the Internet of Things in precision agriculture. Multimedia Tools and Applications. 2024 Jul 9:1-76. [112] Sutera G, Borgese A, Guastella DC, Cantelli L, Muscato G. A multi-robot system for thermal vision inspection. In2020 23rd International Symposium on Measurement and Control in Robotics (ISMCR) 2020 Oct 15 (pp. 1-6). IEEE. [113] Shamshiri R, Weltzien C, Hameed IA, J Yule I, E Grift T, Balasundram SK, Pitonakova L, Ahmad D, Chowdhary G. Research and development in agricultural robotics: A perspective of digital farming. [114] Saint-Aimé S, Grandgeorge M, Le-Pévédic B, Duhaut D. Evaluation of Emi interaction with non-disabled children in nursery school using wizard of Oz technique. In2011 IEEE International Conference on Robotics and Biomimetics 2011 Dec 7 (pp. 1147-1152). IEEE. [115] Samantaray SK, Rout SS. Design and Development of a Di-Wheel Multipurpose Robot for Smart Agriculture Application. InSmart and Sustainable Technologies: Rural and Tribal Development Using IoT and Cloud Computing: Proceedings of ICSST 2021 2022 Jul 28 (pp. 373-379). Singapore: Springer Nature Singapore. [116] Sarkar D, Ashok Y. Robotics Application in Floriculture. ADVANCES IN HORTICULTURE. 2023:61. [117] Schor N, Bechar A, Ignat T, Dombrovsky A, Elad Y, Berman S. Robotic disease detection in greenhouses: combined detection of powdery mildew and tomato spotted wilt virus. IEEE Robotics and Automation Letters. 2016 Jan 14;1(1):354-60. [118] Schor N, Berman S, Dombrovsky A, Elad Y, Ignat T, Bechar A. A robotic monitoring system for diseases of pepper in greenhouse. InPrecision agriculture\'15 2015 Jul 1 (pp. 627-634). Wageningen Academic. [119] Shafi U, Mumtaz R, García-Nieto J, Hassan SA, Zaidi SA, Iqbal N. Precision agriculture techniques and practices: From considerations to applications. Sensors. 2019 Sep 2;19(17):3796. [120] Silwal A, Davidson JR, Karkee M, Mo C, Zhang Q, Lewis K. Design, integration, and field evaluation of a robotic apple harvester. Journal of Field Robotics. 2017 Sep;34(6):1140-59. [121] Sakaue, O. Development of seeding production robot and automated transplanter system. Jpn. Agric. Res. Q. 1996, 30, 221–226. [Google Scholar] [122] Sánchez, J.T.; Peña, J.M.; Castro, A.I.; Granados, F.L. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef] [123] Santesteban, L.G. Precision viticulture and advanced analytics. A short review. Food Chem. 2019, 279, 58–62. [Google Scholar] [CrossRef] [124] Santos, F.B.N.; Sobreira, H.M.P.; Campos, D.F.B.; Santos, R.M.P.M.; Moreira, A.P.G.M.; Contente, O.M.S. Towards a Reliable Monitoring Robot for Mountain Vineyards. In Proceedings of the 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, Vila Real, Portugal, 8–10 April 2015; pp. 37–43. [Google Scholar] [125] Santos, F.N.; Sobreira, H.; Campos, D.; Morais, R.; Moreira, A.P.; Contente, O. Towards a Reliable Robot for Steep Slope Vineyards Monitoring. J. Intell. Robot. Syst. 2016, 83, 429–444. [Google Scholar] [CrossRef] [126] Santos, L.C.; Aguiar, A.S.; Santos, F.N.; Valente, A.; Petry, M. Occupancy Grid and Topological Maps Extraction from Satellite Images for Path Planning in Agricultural Robots. Robotics 2020, 9, 77. [Google Scholar] [CrossRef] [127] Sarri, D.; Martelloni, L.; Rimediotti, M.; Lisci, R.; Lombardo, S.; Vieri, M. Testing a multi-rotor unmanned aerial vehicle for spray application in high slope terraced vineyard. J. Agric. Eng. 2019, 50, 38–47. [Google Scholar] [CrossRef] [128] Schor, N.; Bechar, A.; Ignat, T.; Dombrovsky, A.; Elad, Y.; Berman, S. Robotic Disease Detection in Greenhouses: Combined Detection of Powdery Mildew and Tomato Spotted Wilt Virus. IEEE Robot. Autom. Lett. 2016, 1, 354–360. [Google Scholar] [CrossRef] [129] Sanyaolu M, Sadowski A. The Role of Precision Agriculture Technologies in Enhancing Sustainable Agriculture. Sustainability 2024, 16, 6668 [Internet]. 2024. [130] Sepúlveda, D.; Fernández, R.; Navas, E.; Armada, M.; González-De-Santos, P. Robotic Aubergine Harvesting Using Dual-Arm Manipulation. IEEE Access 2020, 8, 121889–121904. [Google Scholar] [CrossRef] [131] Shafiekhani, A.; Fritschi, F.; Desouza, G. Vinobot and Vinoculer: From Real to Simulated Platforms. In Proceedings of the SPIE Commercial + Scientific Sensing and Imaging, Orlando, FL, USA, 15–19 April 2018. [Google Scholar] [132] Shafiekhani, A.; Kadam, S.; Fritschi, F.B.; DeSouza, G.N. Vinobot and Vinoculer: Two Robotic Platforms for High-Throughput Field Phenotyping. Sensors 2017, 17, 214. [Google Scholar] [CrossRef] [133] Shamshiri, R.R.; Weltzien, C.; Hameed, I.A.; Yule, I.J.; Grift, T.E.; Balasundram, S.K.; Pitonakova, L.; Ahmad, D.; Chowdhary, G. Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. Eng. 2018, 11, 1–14. [Google Scholar] [CrossRef] [134] Siciliano, B.; Khatib, O. Springer Handbook of Robotics, 2nd ed.; Springer Publishing Company: Cham, Switzerland, 2016. [Google Scholar] [135] Silva, M.F.; Machado, J.T. A literature review on the optimization of legged robots. J. Vib. Control 2012, 18, 1753–1767. [Google Scholar] [CrossRef] [136] Sinden, J.A.; for Australian Weed Management (Australia), C.R.C. The Economic Impact of Weeds in Australia: Report to the CRC for Australian Weed Management; CRC Weed Management: Adelaide, Australia, 2004; p. 55. [Google Scholar] [137] Sistler, F. Robotics and intelligent machines in agriculture. IEEE J. Robot. Autom. 1987, 3, 3–6. [Google Scholar] [CrossRef] [138] Sori, H.; Inoue, H.; Hatta, H.; Ando, Y. Effect for a Paddy Weeding Robot in Wet Rice Culture. J. Robot. Mechatron. 2018, 30, 198–205. [Google Scholar] [CrossRef] [139] Srinivasan, N.; Prabhu, P.; Smruthi, S.S.; Sivaraman, N.V.; Gladwin, S.J.; Rajavel, R.; Natarajan, A.R. Design of an autonomous seed planting robot. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–4. [Google Scholar] [140] Sukkarieh, S. Mobile on-farm digital technology for smallholder farmers. In Proceedings of the 2017 Crawford Fund Annual Conference on Transforming Lives and Livelihoods: The Digital Revolution in Agriculture, Canberra, Australia, 7–8 August 2017; p. 9. [Google Scholar] [141] Solanke S, Mehare P, Shinde S, Ingle V, Zope S. Iot based crop disease detection and pesting for greenhouse-a review. In2018 3rd International Conference for Convergence in Technology (I2CT) 2018 Apr 6 (pp. 1-4). IEEE. [142] Takayanagi H, Nishida T. Weeding Efficacy of an Automatic Weeding Robot Modified from a Mini Robotic Cleaning Ball in a Mesocosm Study. Eco-Engineering. 2017 Apr 30;29(2):53-6. [143] Tarannum, N.; Rhaman, M.K.; Khan, S.A.; Shakil, S.R. A Brief Overview and Systematic Approch for Using Agricultural Robot in Developing Countries. J. Mod. Sci. Technol. 2015, 3, 88–101. [Google Scholar] [144] Turner, D.; Lucieer, A.; Watson, C. Development of an Unmanned Aerial Vehicle (UAV) for Hyper-Resolution Vineyard Mapping Based on Visible, Multispectral and Thermal Imagery. The GEOSS Era: Towards Operational Environmental Monitoring. 2011, Volume 1. Available online: https://www.isprs.org/proceedings/2011/isrse-34/211104015Final00547.pdf [145] Uchida, T.F.; Yamano, T. Development of a remoto control type weeding machine with stirring chains for a paddy field. In Proceedings of the 22nd International Conference on Climbing and Walking Robots and Support Technologies for Mobile Machines (CLAWAR 2019), Kuala Lumpur, Malaysia, 26–28 August 2019; pp. 61–68. [Google Scholar] [CrossRef] [146] Underwood, J.P.; Calleija, M.; Taylor, Z.; Hung, C.; Nieto, J.M.G.; Fitch, R.; Sukkarieh, S. Real-time target detection and steerable spray for vegetable crops. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015. [Google Scholar] [147] United Nations. World Urbanization Prospects: The 2018 Revision. Econ. Soc. Aff. 2018, 1, 1–2. [Google Scholar] [148] Valente DS, Momin A, Grift T, Hansen A. Accuracy and precision evaluation of two low-cost RTK global navigation satellite systems. Computers and electronics in agriculture. 2020 Jan 1;168:105142. [149] Vrochidou E, Tziridis K, Nikolaou A, Kalampokas T, Papakostas GA, Pachidis TP, Mamalis S, Koundouras S, Kaburlasos VG. An autonomous grape-harvester robot: integrated system architecture. Electronics. 2021 Apr 29;10(9):1056. [150] Verbiest, R.; Ruysen, K.; Vanwalleghem, T.; Demeester, E.; Kellens, K. Automation and robotics in the cultivation of pome fruit: Where do we stand today? J. Field Robot. 2020. [Google Scholar] [CrossRef] [151] Wibowo TS, Sulistijono IA, Risnumawan A. End-to-end coconut harvesting robot. In2016 International Electronics Symposium (IES) 2016 Sep 29 (pp. 444-449). IEEE. [152] Wallace, N.D.; Kong, H.; Hill, A.J.; Sukkarieh, S. Energy Aware Mission Planning for WMRs on Uneven Terrains. IFAC-PapersOnLine 2019, 52, 149–154. [Google Scholar] [CrossRef] [153] Williams, H.; Nejati, M.; Hussein, S.; Penhall, N.; Lim, J.Y.; Jones, M.H.; Bell, J.; Ahn, H.S.; Bradley, S.; Schaare, P.; et al. Autonomous pollination of individual kiwifruit flowers: Toward a robotic kiwifruit pollinator. J. Field Robot. 2020, 37, 246–262. [Google Scholar] [CrossRef] [154] World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. 2020. Available online: https://covid19.who.int/ . [155] Wu, X.; Aravecchia, S.; Lottes, P.; Stachniss, C.; Pradalier, C. Robotic weed control using automated weed and crop classification. J. Field Robot. 2020, 37, 322–340. [Google Scholar] [CrossRef] [Green Version] [156] Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef] [157] Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. J. Field Robot. 2020, 37, 202–224. [Google Scholar] [CrossRef] [Green Version] [158] Yu, Y.; Zhang, K.; Liu, H.; Yang, L.; Zhang, D. Real-Time Visual Localization of the Picking Points for a Ridge-Planting Strawberry Harvesting Robot. IEEE Access 2020, 8, 116556–116568. [Google Scholar] [CrossRef] [159] Zha, J. Artificial Intelligence in Agriculture. J. Phys. Conf. Ser. 2020, 1693, 012058. [Google Scholar] [CrossRef] [160] Zhang, L.; Dabipi, I.K.; Brown, W.L., Jr. Internet of Things Applications for Agriculture; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2018; Chapter 18; pp. 507–528. [Google Scholar] [161] Zhang, X.; Davidson, E.A. Improving Nitrogen and Water Management in Crop Production on a National Scale. AGU Fall Meeting Abstracts. 2018, Volume 1, pp. 1–2. Available online: https://ui.adsabs.harvard.edu/abs/2018AGUFM.B22B..01Z/abstract (accessed on 1 March 2021).
Copyright © 2025 Atiya Maqbool. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Paper Id : IJRASET66780
Publish Date : 2025-01-31
ISSN : 2321-9653
Publisher Name : IJRASET
DOI Link : Click Here